

https://bit.ly/multicloud-report

Eva Tuczai and Asena Hertz

Managing Kubernetes
Performance at Scale

Operational Best Practices

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05352-1

[LSI]

Managing Kubernetes Performance at Scale
by Eva Tuczai and Asena Hertz

Copyright © 2019 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://oreilly.com). For more infor‐
mation, please contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Acquisitions Editor: Nikki McDonald
Development Editor: Eleanor Bru
Production Editor: Christopher Faucher
Copyeditor: Octal Publishing, LLC

Proofreader: Christina Edwards
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2019: First Edition

Revision History for the First Edition
2019-04-22: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Managing Kuber‐
netes Performance at Scale, the cover image, and related trade dress are trademarks
of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the
publisher’s views. While the publisher and the authors have used good faith efforts
to ensure that the information and instructions contained in this work are accurate,
the publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use of or
reliance on this work. Use of the information and instructions contained in this
work is at your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property rights of
others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

This work is part of a collaboration between O’Reilly and Turbonomic. See our state‐
ment of editorial independence.

http://oreilly.com
http://www.oreilly.com/about/editorial_independence.html
http://www.oreilly.com/about/editorial_independence.html

Table of Contents

Managing Kubernetes Performance at Scale. 1
Introduction 1

Why Build for Scale Now? 2
Kubernetes Best Practices and the Challenges that Remain 2

Managing Multitenancy 3
Container Configurations: Managing Specifications 5
Autoscaling 8
Managing the Full Stack 15
Conclusion 18

References 19

iii

Managing Kubernetes
Performance at Scale

Operational Best Practices

Introduction
Enterprises are investing in Kubernetes for the promise of rapid
time-to-market, business agility, and elasticity at multicloud scale.
Modern containerized applications of loosely coupled services are
built, deployed, and iterated upon faster than ever before. The
potential for businesses—the ability to bring ideas to market faster—
has opened the Kubernetes adoption floodgates. Nevertheless, these
modern applications introduce extraordinary complexity that chal‐
lenges the best of teams. Ensuring that you build your platforms for
growth and scale today is critical to accelerating the successful adop‐
tion of Kubernetes and the cloud-native practices that enable
innovation-first operations.

This ebook is for Kubernetes operators who have a platform-first
strategy in their sights, and need to assure that all services perform
to meet Service-Level Objectives (SLOs) set by their organization.
Kubernetes administrators and systems architects will learn about
common challenges and operational mechanisms for running pro‐
duction Kubernetes infrastructure based on proven environments
across many organizations. As you learn about the software-defined
levers that Kubernetes provides, consider what must be managed by
you versus what can and should be managed by software.

Building for scale is all about automation. From the mindset and
culture to the technologies you adopt and the architectures you
introduce, managing elasticity necessitates that IT organizations
adopt automation to assure performance without introducing labor
or inefficiency. But automation is not a binary state of you are either
doing it or not. Everyone is automating. The crux of automation is

1

the extent to which you allow software to manage the system. From
container configuration to autoscaling to full-stack management,
there are levers to control things. The question is: are you control‐
ling them (deciding what to do and when to do it) or are you letting
software do it?

Why Build for Scale Now?
Think about what you’re building toward. You want to give develop‐
ers the agility to quickly deliver business-critical applications and
services. You want to assure that the applications always perform.
And you want to achieve the elasticity required to adapt at scale to
continuously fluctuating demands. These are difficult challenges
that require the right mindset from the beginning.

Why? Because what you are building can transform the productivity
of the lines of business that you support. They will be knocking
down your doors to adopt it. In other words, your success acceler‐
ates the management challenges that come with greater scale and
complexity.

You will not want to say no to new business. Ever. Build and auto‐
mate for scale now and you won’t need to.

Kubernetes Best Practices and the
Challenges that Remain
Our targeted audience is someone who uses Kubernetes as a plat‐
form for running stateless and stateful workloads in a multitenant
cluster, supporting multiple applications or lines of business. These
services are running in production, and the operator should take
advantage of the data about how these services are running to opti‐
mize configuration, dynamically manage allocation of resources to
meet SLOs, and effectively scale the cluster capacity in or out to sup‐
port this demand.

The best practices here focus on how to optimize compute resources
for an existing Kubernetes platform and the services running in pro‐
duction. We review how resource allocation in a multitenant envi‐
ronment is managed through quotas and container size
specifications, and what techniques are provided within the plat‐
form to manage scaling of resources and services when demand
changes. We explore Horizontal Pod, Vertical Pod, and Cluster

2 | Managing Kubernetes Performance at Scale

Autoscaling policies, what factors you need to consider, and the
challenges that remain that cannot be solved by threshold-based
policies alone.

Still figuring out how you want to build out your Kubernetes plat‐
form? Consider reviewing material that discusses how to assure high
availability with multiple masters, considerations for the minimum
number of worker nodes to get started, networking, storage, and
other cluster configuration concepts, which are not covered here.

Managing Multitenancy
Kubernetes allows you to orchestrate and manage the life cycle of
containerized services. As adoption grows in your environment, you
will be challenged to manage a growing set of services from different
applications, each with its own resource demands without allowing
workloads to affect one another. Let’s first review how containerized
services gain access to compute resources of memory and CPU. You
can deploy pods without any capacity defined. This allows contain‐
ers to consume as much memory and CPU that is available on the
node, competing with other containers that can grow the same way.
Although this might sound like the ultimate definition of freedom,
there is nothing inherent to the orchestration of platforms that man‐
ages the trade-offs of consumption of resources, against all the
workload in the cluster, given the available capacity. Because pods
cannot “move” to redistribute workload throughout the cluster,
allowing all your services to have untethered access to any resource
could cause node starvation, performance issues such as congestion,
and would be more complicated to plan for onboarding new serv‐
ices.

Although containers are cattle not pets, the services themselves can
be mission critical. You want your cattle to have enough room to
graze but not overtake the entire field. To avoid these scenarios, con‐
tainers can have specifications that define how much compute
resources can be reserved for only that container (a request) and the
upper capacity allowed (a limit). If you specify both limits and
requests, the ratio of these values, whether 1:1 or any:any, changes
the Quality of Service (QoS) for that workload. We don’t go into
detail here about setting limits and requests, and implications such
as QoS, but we do explore in the next section the benefits of opti‐
mizing these values by analyzing the actual consumption under pro‐
duction demand.

Kubernetes Best Practices and the Challenges that Remain | 3

Even though setting container specifications puts boundaries on our
containers, operators will want to manage the total amount of
resources allowed for a set of services, to separate what App A can
get access to versus App B. Kubernetes allows you to create name‐
spaces (logical groupings in which specific services will run), and
you can use other resources for just the deployments in specific
namespaces. As the number of services grow, you have an increasing
challenge in how to manage the fluctuating demand of all these
services and ensure that the pods of one service do not consume a
disproportionate amount of resources from the cluster from other
services. To manage a multitenant environment and reduce the risk
of cluster congestion, DevOps will use a namespace (or project) per
team, and then constrain the capacity by assigning resource quotas,
which define the maximum amount of resources available to the
pods deployed in that namespace. The very use of a resource quota
then requires any pod deployed must be minimally configured with
a limit or request (whatever matches the resource quota type defined
in the namespace). For example, if myNamespace has a 10 GiB mem‐
ory quota limit, all pods running there must have a memory limit
specified. You are trading elasticity for control. While these quotas
and pod/container specifications provide some guidance on how
many resources can be used by a set of workloads, these are now
more constraints that have to be monitored, managed, and part of
your capacity planning.

Operators can use other techniques to avoid congestion by influenc‐
ing where pods will be deployed by the scheduler. The use of node
labels, affinity and antiaffinity rules, and taints round out the com‐
monly used techniques to apply constraints on the scheduler where
pods can run.

In summary, to control how a workload has access to compute
resources, the operator can use any one or more of the following
techniques to constrain services:

• Namespace quotas to cap limits and requests
• Container specifications to define limits and requests, which

also defines QoS
• Node labels to assign workloads to specific nodes
• Affinity/Antiaffinity rules that force compliance of where pods

can and cannot run

4 | Managing Kubernetes Performance at Scale

• Taints and tolerations, as well as considerations for evictions

Container Configurations: Managing Specifications
As previously discussed, you can deploy workloads with specifica‐
tions that define how much CPU or memory is reserved for a con‐
tainer, defined by requests, and the maximum amount of CPU or
memory allowed, as defined by a limit. Before we get into optimiz‐
ing these values, let’s review some use cases in which you want to use
limits and requests. Because requests are reserved only for a specific
container, you might have services that require a minimum amount
of resources to start and run effectively; Java processes come to
mind for which you might want to guarantee a minimum amount of
memory that can correspond to an -Xms (minimum heap) value for
the Java process. Likewise, limits present an upper limit that can be
intended to prevent a process from using as much memory as it
could; for instance, in the case of a memory leak. Limits and
requests give you some control over how your workloads are sched‐
uled and run, but you need to set them carefully and adjust them
based on how the service actually performs in production.

Next, we explore what you should be doing to manage these con‐
straints in the system.

What happens when a container isn’t sized correctly?
Sizing containers appropriately has a direct impact on the end-user
experience—and your budget. The implications at scale could make
or break the expansion of a Kubernetes platform-first initiative. Let’s
point out some likely obvious consequences of container sizing.

Although requests provide guaranteed resources for your service,
make sure that you are consuming these reservations because these
resources are offlimits to any other workload. Being too conserva‐
tive with requests (allocating too much) has the compound effect
over multiple services of requiring more compute nodes to run the
desired number of pods, even though the actual overall node con‐
sumption is underutilized. The scheduler uses requests as a way to
determine capacity on a node; overallocating with requests mainly
assures that you will be overprovisioned, which can also mean you
are spending more money.

Kubernetes Best Practices and the Challenges that Remain | 5

Additionally, if you are thinking about taking advantage of Horizon‐
tal Pod Autoscaling policies, which we discuss in the next chapter,
the scheduler can only deploy more workloads onto a node if the
node can accommodate all requests of all pods running there. Over‐
allocating request capacity will also guarantee that you must over‐
provision compute to be able to scale out services.

Let’s look at the impact of limits. First, remember that CPU and
memory are handled differently; you can throttle CPU, whereas
Kubernetes does not support memory swapping. If you have too
aggressively constrained the limits, you could starve a pod too soon,
or before you get the desired amount of transaction throughput for
one instance of that service. And for memory, as soon as you reach
100%, it’s OOM (out of memory), and the pod will crash. Kuber‐
netes will assure that a crashed pod will be redeployed, but the user
who is waiting for a transaction to complete will not have a good
experience leading up to the crash, not to mention the impact the
crash has on a stateful service.

Managing vertical scaling of containers is a complicated and time-
consuming project of analyzing data from different sources and set‐
ting best-guess thresholds. Operators try to mitigate performance
risks by allocating more resources just to be safe. Performance is
paramount after all. At scale, however, the cost of overprovisioning,
especially in the cloud, will delay the successful rollout of your
platform-first initiative. You need only look to Infrastructure-as-a-
Service adoption for proof: those organizations that struggle with
unexpectedly high cloud bills also face delays in adopting cloud-first
strategies.

Best practices for sizing containers
When containers are sized correctly, you have assured performance
for the transactions running on a containerized service while effi‐
ciently limiting the amount of resources the service can access. Get‐
ting it right starts with an approximation that needs to be validated
through stress testing and production use.

Start your approximations with the following considerations:

1. Is your workload constrained to run in a namespace with a
quota? Remember to take your required number of replicas for
each service and have the sum fall below your quota, saving
room for any horizontal scaling policies to trigger.

6 | Managing Kubernetes Performance at Scale

2. Do you have a minimum amount of resources to start the ser‐
vice? Define only the minimum. For example, a Java process
that has an -Xms defined should have a minimum memory
request to match that, as long as the -Xms value is properly
sized.

3. What resource type is your service more sensitive to? For exam‐
ple, if it is more CPU intensive, you might want to focus on a
CPU limit, even if it is throttled.

4. How much work is each pod expected to perform? What is the
relationship between that work, defined as throughput of
requests or response time, and amount of CPU and memory
required?

5. Are there QoS guarantees that you need to achieve? You should
be familiar with the relationship of limits and requests values
and QoS. But don’t create divas; burstable QoS will work for
mission-critical services. If the service/pod must have a guaran‐
teed QoS, you have to set container specifications so that every
memory/CPU limit is equal to the request value, reserving all of
the upper limit capacity of resources for that service. Think
about that. This may create wasted resources if you are not con‐
suming most of it.

6. You can get some very good resource utilization versus response
time data if you create stress-test scenarios to capture this data.
Solutions like JMeter and Locust do a great job at defining the
test and generating response time and throughput metrics.
Container utilization values can come from several sources
(cAdvisor and others). One technique is to export these data
sources to Prometheus, and then to use something like Grafana
to visualize these relationships.

The goal will be to first understand what is a reasonable amount of
traffic through one container to ensure that you get a good response
time for a minimum number of transactions. Use this data to assess
the values you have defined for your containers. You want to specify
enough of a lower limit (requests) to assure the service runs, and
then provide enough of an upper limit to service a desired amount
of work out of one container Then, as you increase the load, you will
be more confident in horizontally scaling this service.

It is very important to reassess whether the container sizing is work‐
ing for you in production. Use the data that provides insight into

Kubernetes Best Practices and the Challenges that Remain | 7

http://bit.ly/2N1xdaM
http://bit.ly/2N1xdaM

real-world fluctuating demand. Ideally, you would want to be able to
track every deployment and trend out average, peak consumption of
resources against the defined limit and request values. This informa‐
tion is important to determine whether you have oversized contain‐
ers, or where you continuously reach limits that affect performance
or scalability.

Resizing containers has an impact on capacity. Resizing down
affords more capacity to other workloads on a node, but it also
allows for more pods to be deployed against a namespace quota
while using the same cluster resources. Resizing up needs to account
for underlying resources, whether the node and namespace has
available capacity.

Understanding how to best size containers is important, and
requires you to manage the trade-offs of desired performance
through one instance of a service, resources available, and fluctuat‐
ing demand across node and cluster capacity.

Autoscaling
Suppose that you have followed the aforementioned patterns to
assure that workloads will not risk other services: set up namespaces
with quotas—the requirement placed on any service to specify limits
and requests—and you are testing to make sure the container speci‐
fications are not too constrained or overallocated. This will help you
manage multitenancy, but it does not guarantee service performance
when demand increases. What else can you do?

The next direction to look at is how many instances, or replicas, you
need to effectively run your service under what you define as a rea‐
sonable amount of demand. Like container sizing, gather data on
how your services are performing running with a specific number of
replicas. Are you getting the correct throughput? Response time?
Manually adjust the replica number to see whether you can sustain a
predictable and desired SLO. This might require some adjustment
over time, or changing end-user demand, depending on the patterns
for your service.

What are the options?
You now have some experience with how your services are perform‐
ing, but you realize that you still need to accommodate for bursting.
You have an idea of a target range of replicas to run your service, but

8 | Managing Kubernetes Performance at Scale

you also want to be able to scale out a bit more should demand war‐
rant it. What is in the Kubernetes arsenal to help take some of the
manual effort away? Taking advantage of autoscaling policies.

Autoscaling policies are separated into three categories:

• Horizontally managing services
• Vertically managing container resources
• Node scaling on and off the platform

Horizontal management of services means that you need to express
how you want your services to scale in and out based on some pres‐
sure, whether resource or SLO based. The goal is to determine the
desired number of pods required to run your service when you need
them. Today, the mechanism provided within the platform is the
Horizontal Pod Autoscaler (HPA) implemented as a Kubernetes API
and controller. The functionality is based on defining what metric(s)
you want to use, how to get them (aka custom metrics if you want
something other than CPU), setting a threshold, and then defining
the upper and lower limits of the number of pods you want for a
service. We will go into this in more detail in the next section, but it
is important to remember that you must configure this trigger-based
policy for each service, and that it is based on the average of the ser‐
vice (not per pod). You can find documentation on HPA here.

Vertical management of services means that you want to identify
how to vertically scale a container, ideally to manage both requests
and limits. Overallocating on a resource affects your ability to scale
out and run more services without overprovisioning; underallocat‐
ing could risk performance. One mechanism that is still in beta is
the custom resource definition object called the Vertical Pod
Autoscaler (VPA), which manages only resource requests. The algo‐
rithm increments request values up and down based on data it is
gathering from Prometheus and requires manual configuration to
control recommendations. VPA can operate in four modes, includ‐
ing a recommendation mode (mode = off); assign request values on
initial deployment only (initial); and has the ability to change the
deployment (recreate versus auto, currently not a significant differ‐
ence). The VPA project is still in beta (at the time of this ebook) so
carefully review the limitations, and consider that there is no corre‐
lation between the different policies you create. This could case pol‐
icy A to undo the benefit of policy B. One example and best practice:

Kubernetes Best Practices and the Challenges that Remain | 9

http://bit.ly/2r08Row

you should not use HPA and VPA together for the same service if
both policy types are triggered by the same metric. Since VPA can
only use CPU or memory, you should consider a custom metric for
a HPA policy on the same service. There is a related project called
Addon Resizer that requires you to configure how to manage resiz‐
ing of singletons and heapster, metrics-server, kube-state-metrics
addons, and using a “nanny” pod that scales resources. You can find
more details on VPA here.

Now let’s consider how to manage the nodes or underlying infra‐
structure. Containerization promises agility, portability, and elastic‐
ity. Nodes do not need to be static resources, with the possible
exception of baremetal nodes, unless you have the ability to dynami‐
cally place blades in and out of service. Proper assessment of
demand versus supply of resources can allow you to consider ways
to scale the infrastructure. You should consider the following fac‐
tors:

• Scripts, orchestration to scale nodes, in or out.
• The time it takes to spin up a node.
• When consolidating, assuring capacity is available to handle

workload that is being drained.
• Understand whether you have any policies (node labels, taints,

etc.) that must be accommodated. The more consistent nodes
are, the easier it is to manage resources.

• Monitor memory and CPU, allocatable resources, averages and
peaks.

You can manage node resources either on platform using the Cluster
Autoscaler (CA) project, which is also part of the Google Kubernetes
Engine (GKE Cluster Autoscaler), off platform by using scale groups
(autoscaling groups, availability sets, etc.) offered by cloud provid‐
ers, or setting thresholds tracked from the on-premises infrastruc‐
ture that needs someone to make a decision about how and where
another worker node can spin up. The main benefit of the CA is that
it is watching for a pod pending state that fails due to insufficient
resources, which will trigger creating a new node. Likewise, when
there is low utilization for an extended period of time and the pods
on the lowest utilized node can run elsewhere, a node will suspend.
The definition of resources here is also requests. So, as long as you
have not overallocated requests, a pod pending state is a good indi‐

10 | Managing Kubernetes Performance at Scale

http://bit.ly/2R1BIW1
http://bit.ly/2BDnAMZ
http://bit.ly/2BDnAMZ
http://bit.ly/2ZhDPct

cation of additional compute. But if you have not optimized your
container specifications for requests, you could be spinning up addi‐
tional compute even when, from a consumption perspective, there
are resources available in the cluster—this just requires some reor‐
ganization. You can find more details on the Cluster Autoscaler
here.

If you are using public cloud compute with scale groups, here you
will not be able to correlate a pod pending state to the need for more
compute. But you could set upper and lower limits of the threshold
based on a metric that you might need to configure to be collected,
and this threshold would be triggered off of utilization of the
resource you specified. This kind of policy can catch when a node is
becoming overutilized, or whatever your definition is of that state,
but does not guarantee pods will deploy. For more details on scale
groups, start here for AWS autoscale groups, Azure availability sets,
and Azure scale sets.

Approaches for creating and managing autoscaling policies
HPA policies are the most popular because by definition they do not
require a restart of a service, pod, or deployment, unless there is a
shutdown of a pod due to underutilization, making these policies
more flexible. The desirable outcome of using HPA is a consistent
performant service without overprovisioning the environment,
which is a difficult task to do. You need to consider and define mul‐
tiple factors and then test combinations, balancing out the thresh‐
olds versus the upper and lower limits of the pods to avoid throwing
the environment into a yo-yo pattern of too much (requiring you to
overprovision) or too little (which does not assure performance).
The process involves asking yourself a series of questions:

1. For what pressure condition am I trying to build an HPA pol‐
icy?
a. What are the conditions that most affect the performance of

my service? Is it more CPU or memory sensitive?
b. Do I have SLOs for my service that I want to meet?
c. If both resources and SLOs are important, will I need to con‐

sider how to balance thresholds for multiple metrics in a sin‐
gle policy?

Kubernetes Best Practices and the Challenges that Remain | 11

http://bit.ly/2KJpwu5
http://bit.ly/2KJpwu5
https://amzn.to/2DgtbcA
http://bit.ly/2Ulf1wF
http://bit.ly/2Vb3ZhG

2. What metrics and key performance indicators (KPIs) should I
use to best represent this condition?
a. You can start with one resource KPI, but you will probably

realize that you need to also represent a SLO metric of either
transaction/request throughput (how many requests can I
handle), or response time, or both!

b. Remember, only the average of the KPI is considered, not the
maximum.

c. SLOs are custom based, so you need to consider how to col‐
lect these metrics.

3. What should the KPI threshold be?
a. Start with a conservative metric that might trigger actions

“early” and then iterate to higher thresholds.
b. When working with multiple metrics, start with each metric

separately and then combine.
c. Remember these values are assessed on the average of a ser‐

vice, so at any given point there will be pods that have higher
and lower values.

4. What should I define as the upper and lower limit of number of
pods for this service?
a. Ask yourself whether your goal is to provide reliable, consis‐

tent SLO, or to make sure that you have a safety net in case of
a burst? Too high of a value can cause a yo-yo of scale up
then down then up again.

b. Does your service have a long startup time? You are likely
using readiness and/or liveliness probes, but for services that
have a longer “warmup” period, you would want to maintain
a higher minimum value to ensure availability.

For more on the topic of how to choose metrics refer to the
Requests-Errors-Duration pattern (or the RED Method), and Goo‐
gle’s Site Reliability Engineering book talks about the Four Golden
Signals, which are essentially requests, errors, duration, and satura‐
tion (utilization).

After you are armed with some data and targeted goals for your ser‐
vice, the process of turning information into an actionable policy is
really a cycle of answering questions like what is my SLO, what are
my KPIs, and what threshold should I set, and then what are my

12 | Managing Kubernetes Performance at Scale

http://bit.ly/2VRYTUK
https://landing.google.com/sre/

replica minimum and maximum targets. Figure 1-1 shows the itera‐
tive process you need to go through to achieve a scale policy that
produces consistent and reproducible results.

Figure 1-1. Getting HPA policies right is a continuous exercise that
involves time and people.

After you have the combination that balances the outcome that you
want to achieve, you need to repeat this process for the next service,
and the next. For your first application, and for services that are very
similar, the scale of this exercise can be manageable, but as more
services want to use HPA, and as services can change in how they
behave through different releases, this is a task to which you need to
allocate time and people.

As the number of services that utilize HPA policies grow, there are a
couple more questions that you must answer: how can I assure that
the infrastructure can support the additional pods being generated,
and how can I effectively and dynamically scale my worker nodes?

To answer these questions, you need to consider Node Autoscaling.
Start with a simulation that has the maximum number of pods, as
defined by the upper limit of your HPA policies, and then assure
that this number produces a consistent desired SLO. If it does, you
know your upper limit. Don’t forget that you have other services
running. Simulate your services reaching their upper limits at once.
If you end up with a pod pending due to insufficient resources, and

Kubernetes Best Practices and the Challenges that Remain | 13

without a dynamic way to reclaim unused guarantees (requests)
while defragmenting resources, you set a condition to trigger nodes
when pods are pending. This is a key use case for the CA Special
Interest Group (SIG). This approach gets you out of a bursting sit‐
uation when you have a flexible infrastructure and can quickly spin
up compute. But you need to observe for scenarios where too many
nodes spin up and adjust accordingly.

Thresholds do not guarantee performance
The main limitation in working with any threshold-based approach
is policies are disparate control points that are not correlated with
one another or even able to assess whether an action is executable. A
human being needs to consider the possibility that a triggered policy
cannot execute, which might then require you to create another trig‐
ger. These are myopic scenarios that evaluate only the threshold
condition, nothing else. As a backup, you might still need alerting of
scenarios requiring human intervention. For example, an action to
horizontally scale a service might be triggered off of a policy that has
a threshold on response time and CPU, but the new pods might not
be assured and can be pending. You then need to be notified that a
pod is pending and determine whether the issue is unavailable
resources or a namespace quota that was too restrictive to account
for scaling. You could implement the Cluster API, which will allow
you to set a trigger event for a pod pending to create another worker
node, but this would not guarantee that a pod can be scheduled. You
might be bound by another constraint of a namespace resource
quota or need to make sure that the new node is compliant with
everything the pod needs (GPU, labels, Windows or Linux, etc.).

Consider also the methodology of using both HPA and VPA poli‐
cies, assuming that you avoid using the same threshold metrics for
both policy types. At what point do you first want to horizontally
scale a service but risk propagating a not-so-optimized size? Too
constrained, and you will just keep running up against the HPA
threshold until you reach your pod upper limit count, and perfor‐
mance is still bad. You could end up triggering an HPA policy based
on CPU, but then memory requests are oversized, which potentially
crowds out other services that need that memory to handle more
throughput. You could try to vertically scale first, but how do you
know that you have enough node capacity to execute the action?

14 | Managing Kubernetes Performance at Scale

Although scaling policies are a way to help you provide some level
of threshold control coverage to trigger creating more instances of a
service, these policies do not test themselves to ensure that they spin
up only the right number of pods that can run in the cluster. This
means that the operator must consider the “what-if ” scenario if the
maxReplicas defined for the service trigger and other services are
also horizontally scaling out at the same time. How do you avoid
pending pods? The answer is to set up another scenario to trigger
for cluster scaling either based on pod pending (Cluster API SIG
addresses this) or based on some node utilization threshold. Does
one threshold being triggered from another assure performance?
Ideally, you should let the appropriate analysis of the environment
work for you: analytics that can assess continuously whether you
can resize down to reclaim unused resources, intelligently redistrib‐
ute running workload, and predict how many pods you would need
of each service to maintain response times. You then could even pre‐
dict the additional nodes that would be needed. The key would be
for these decisions to be based on an understanding of the full stack
of changing consumption of resources, constraints, and relation‐
ships of supply and demand.

Managing the Full Stack
Containerization and microservices provide a benefit to the applica‐
tion developer that they can innovate without concern for the
underlying infrastructure. But these containers need to run on some
infrastructure that someone somewhere is managing, whether it is
on-premises virtualization, public cloud resources, or baremetal
nodes. Even Kubernetes is not a fully managed solution: the service
provides the convenience of creating the cluster and managing
updates, but you still need to manage the compute and storage for
which you are paying.

It’s important to have insight through all the sources of compute,
network, and storage. Bottlenecks below can translate to perfor‐
mance issues above. Think about persistent volumes (PVs) and the
associated data store/volume. Knowing that there is input/output
per second congestion would be a consideration for the services
using that PV.

So how do people get full-stack visibility today? You become com‐
fortable with different tools, and for larger environments, you
engage your subject matter expert (SME) peers with more infra‐

Kubernetes Best Practices and the Challenges that Remain | 15

structure background. Even working with SMEs, someone needs to
piece together the relationships of the architecture from platform to
pods to services, and understand how making a change at one level
affects the others. There are a whole host of tools and views from the
different layers of the stack: the kubernetes command line interface
kubectl, native dashboards (whether K8s or from a PaaS version), if
running hosted K8s the public cloud provider views (AKS, EKS,
GKE, etc.) are available, the infrastructure views (whether public
cloud dashboards or on-premises vSphere client), other related
infrastructure like hyperconverged (e.g., Cisco HyperFlex Connect),
and more. These SME insights mean that teams have to spend sig‐
nificant amounts of time trying to figure out the dependencies and
then determine whether an issue in one layer is being caused by or
affecting another. Even overprovisioning, although a costly answer,
does not mitigate the need for full-stack insight.

Now imagine that you are multicluster and need a federated view of
the environment? How would this operationally scale for multicloud
if you want to use different infrastructure and services? Wouldn’t
you rather be focusing on what is needed to scale the business
instead of the number of perspectives of data?

Visibility is not the only objective. Full-stack insight should show
you not only components of the platform, but also the relationships
and interdependencies. Assuring performance is a complex prob‐
lem. Even if your answer is to scale out resources, if you are on-
premises, placement and capacity of the hypervisor, host, storage,
fabric, and so on are factors. Are you in the public cloud? You will
exchange these decisions with that of budget and cost.

Compliance
Managing compliance and constraints is actually a full-stack chal‐
lenge, too. At the top, you might have service-level goals for your
applications. In the next layer, you might use techniques to influence
placement of workloads that could be for technical or business rea‐
sons. Node labels are explicit rules that pods with label x must run
on nodes labeled x, as well. These are techniques to guide pods to
nodes that provide specific compute capabilities (like GPU process‐
ing), or location if there are data sovereignty requirements. This
technique is even used to manage licensing and chargeback. Taints
and tolerations are more subtle and can be implicit or explicit. You
could imply a preference for special pods to be on a node, but if

16 | Managing Kubernetes Performance at Scale

there is pressure in the environment, to loosen that preference.
Affinity and antiaffinity rules are more explicit as to what can run
where and what can not run. You could also introduce a hard con‐
straint as a compliance rule, such as prescribing the maximum num‐
ber of pods that can run on a node. Although this is a technique that
might (or might not) keep the node from becoming overutilized, it
definitely reduces the efficiency of the cluster.

Then, in the layer below, there can be more compliance rules. There
can be affinity and antiaffinity rules where compute nodes can run.
High availability policies might enforce separation to assure availa‐
bility in case of a loss.

Decisions made on how to manage resources need insight through‐
out the stack to assure compliance up and down.

Capacity management
Congratulations! You’ve rolled out your first set of services using
Kubernetes, and you even utilized some of the techniques to influ‐
ence pod placement, scaling, and stay within business compliance.
Don’t get too comfortable. The success of this Phase 1 project has
opened the floodgates, and now more services want to get onboard.
Many more. What’s the golden rule? Never keep an application wait‐
ing. Even though the pods can deploy in a minute or less, planning
for growth can take longer—much longer.

Now you are ready to plan for growth. Borrowing directly from the
concepts laid out in this three-part series, “How Full is My Cluster,”
the first step is to take inventory in how you are managing multite‐
nancy, whether you are using quotas, and then account for the
requests and limits. Requests are important because this is what the
scheduler will use to consider available capacity. Because these con‐
tainers should be treated like cattle, not pets, the variation in the
environment is ever changing, so you need some data to understand
daily averages and peaks.

Now you collect data from the environment and analyze trends to
run scenarios of over- and underestimations. If you have a lot of
compliance scenarios to deal with, you might need to assess this on
a per-node basis. After you have an estimation that you can live
with, you need to assess the additional nodes and resources required
against the infrastructure you are managing: on-premises; what
host, datastore capacity is required for the additional nodes; if bare

Kubernetes Best Practices and the Challenges that Remain | 17

https://red.ht/2vcgP0S

metal, where will these blades go, and do you have what is required
to accommodate them (maybe lead time is an issue). And in the
public cloud, you should be able to articulate the increase in budget
needed to run this plan.

This in-depth analysis probably took some time, but it did not
account for some other considerations, such as could I have opti‐
mized the size of my containers? Did I account for the potential trig‐
gering of HPA policies (more pods—assume that they all hit
maximum at once or not?)? Do I have more headroom than I
thought to accommodate peak demand and can I loosen up on the
constraints? These answers require you to rerun your estimations
with approximations, which takes more time. And those apps and
lines of business are waiting.

A good capacity management strategy should share the same analyt‐
ics used to manage performance and efficiency in the running envi‐
ronment, which accounts for the full-stack relationships and runs
the environment to ensure SLOs are met that optimize workloads’
access to the right amount of supply for demand.

Conclusion
Kubernetes promises rapid time-to-market, business agility, and
elasticity at multicloud scale. Demand for platforms that allow your
lines of business to bring ideas to market faster will quickly grow.
What you build today and the best practices you establish will last
for years to come. How will you continuously assure performance
and maintain compliance while minimizing cost?

By now you know that trying to do this on your own, manually
adjusting Kubernetes’ software-defined mechanisms, is both labor
intensive and risky. Navigating the performance, compliance, and
cost trade-offs is not the goal of Kubernetes. There is a reason that a
rapidly growing ecosystem of solutions has grown around the plat‐
form.

Effectively managing performance, cost, and compliance is a chal‐
lenge that existed long before Kubernetes and will continue to exist
long after. Solving for these trade-offs is critical to your organiza‐
tion’s ability to fully achieve the promise of Kubernetes.

This ebook has outlined the software-defined mechanisms that
Kubernetes provides. But, again, consider that software should man‐

18 | Managing Kubernetes Performance at Scale

age these levers, not you. When software continuously and automat‐
ically navigates the resource trade-offs that exist in any multicloud
environment, you will more quickly reap the benefits of a platform-
first strategy. Only software can continuously assure the SLO of each
modern application service, elastically adjusting resources as needed
while staying compliant. Only you can understand the business and
how to best drive it forward.

References
Horizontal Pod Autoscaling

Cluster API (subproject of sig-cluster-lifecycle)

Vertical Pod Autoscaling

Cluster Autoscaler

References | 19

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://github.com/kubernetes-sigs/cluster-api
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler

About the Authors
Eva Tuczai has more than 15 years of experience in IT solutions,
including application performance management, virtualization opti‐
mization, and automation and cloud native platform integration. As
part of Turbonomic’s Advanced Engineering team, she is committed
to bringing a customer-centric solution approach to solve challenges
with performance and efficiency, while leveraging elasticity.

Asena Hertz brings more than a decade of experience in disruptive
technologies, spanning workload automation, energy and resource
analytics, developer tools, and more. As a Product Marketing leader
at Turbonomic, Asena is passionate about the long-term impact and
role that cloud native architectures and distributed systems will have
on the future of IT and the way businesses bring new ideas to mar‐
ket.

	Cover
	Turbonomic
	Copyright
	Table of Contents
	Chapter 1. Managing Kubernetes Performance at Scale
	Introduction
	Why Build for Scale Now?

	Kubernetes Best Practices and the Challenges that Remain
	Managing Multitenancy
	Container Configurations: Managing Specifications
	Autoscaling
	Managing the Full Stack
	Conclusion

	References

	About the Authors

