
THE ENGINEERING MANAGER'S
GUIDE TO THE CODE REVIEW
PROCESS

2|The Engineering Manager's Guide To The Code Review Process

The general purpose of code review is for development

teams to recognize and remedy bugs before code hits

production. That’s the traditional view. Yet we also

believe that code review can accomplish much more

than just that one pragmatic outcome—especially if

leaders and managers become meaningful participants

in the review process.

Beyond fixing bugs, code review (we use the words PR,

pull request, and code review interchangeably) results

in higher quality code that is more broadly understood

across a team. Studies show that this process saves

money, reduces reliance on QA, and improves

engineering development, knowledge sharing, and the

overall culture of the team in addition to the quality

of the code. It’s also an opportunity for engineers to

collaborate, learn from their peers, practice mentorship,

and discover improved solutions to problems.

In this guide, we’ve assembled foundational resources

for software engineering leaders to be able to

communicate concisely about the outcomes of code

review (both the traditional goal of higher-quality code

as well as improved collaboration and problem-solving

within teams). This guide also highlights the manager’s

role in the code review process, including eight review

dynamics common to engineering teams. These

dynamics include ways to recognize various working

patterns in teams, and ways to leverage these insights

to coach the team towards more sustainable practices

and help reduce any friction in working together.

THE OUTCOMES OF CODE REVIEW, AND HOW
MANAGERS CAN IMPROVE THE PROCESS IN A
WAY THAT BENEFITS THE TEAM AS A WHOLE.

3|The Engineering Manager's Guide To The Code Review Process

OUTCOMES OF THE REVIEW PROCESS

By its peer-review nature, code review is conducted by the same

engineers who are also writing and submitting code. That means time

spent reviewing code seems, on the surface, to compete with time

spent creating it. Ultimately, though, PRs are a strong investment in

the continuous health of a product.

Leveraging code review prior to production streamlines the

development process, highlights bottlenecks and process issues, and

sets the stage for improving the overall health and capacity of teams.

Essentially, code review enables collaboration between engineers and

a higher quality of production.

HIGHER-QUALITY CODE

Even as recently as a decade ago, the primary (and often sole)

purpose of conducting code review was to ensure the quality of the

code. There are different ways of doing so, of course. But none of

them can compare to peer review.

In Code Complete: A Practical Handbook of Software Construction,

author Steve McConnell identifies that the average defect detection

rate for unit testing is a mere 25%, with function testing’s rate at

35% and integration testing’s at 45%. Likewise, he states that the

average effectiveness of design inspections is 55%, and 60% for code

inspections.

Code review has been shown to decrease errors by a staggering 80%.

For example, McConnell points to a study that examined a group of

11 programs developed by the same team—five of which underwent

no review at all. Those five programs contained, on average, 4.5

errors per 100 lines of code. On the flip side, the six programs that

underwent code review averaged only .82 errors per 100 lines.

Some notable companies have shared research that indicates the use

of review as a vital component of saving money and reducing errors:

• IBM’s 500,000-line Orbit project used 11 levels of inspection and had

only about 1% of the errors that would be expected without review—all

while achieving early delivery.

• A study of a 200-person organization within AT&T introduced code

reviews and subsequently experienced a 14% increase in productivity

and a 90% decrease in defects.

• Jet Propulsion Laboratories estimates savings of approximately

$25,000, simply by identifying (and repairing) defects in review at

earlier stages.

A large-scale study of coder review coverage and participation at the

University of California-Berkeley shows that code review reduces the

number of bugs and security bugs in production. The research also

suggests that implementing code review policies may have a positive

effect on the quality and security of software.

TL;DR? Yes, code review is time spent not writing code, yet the

process actually generates higher integrity within the code and

does so more productively. It ultimately improves efficiency while

maximizing your engineers’ time and talents, as well as other

resources.

4|The Engineering Manager's Guide To The Code Review Process

COLLABORATION AND IMPROVED
SOLUTIONS TO PROBLEMS

As software development methodology has evolved,

so has our understanding of code review. It’s no longer

solely about ensuring the quality of the code—it’s also

become a realm (and perhaps THE realm) for engineers

to relay information, learn from each other, and develop

as creative professionals.

In so many ways, engineering is a loner’s activity.

Earbuds in, head down, no distractions, and it’s

amazing what an engineer can create in a day.

But engineering teams are teams for a reason—

collaboration, such as what PRs enable, contributes

to monster levels of knowledge-sharing and therefore

more creative, powerful solutions. As they say, software

development is a team sport.

Researchers conducted a survey with 645 top

contributors to active OSS projects. The results

suggested that engineers have a strong interest

in maintaining awareness of project status to get

inspiration and avoid duplicating work—but they don’t

tend to proactively propagate information. In other

words, there’s often a delta between how engineers

want to leverage the review process and how it’s

actually being leveraged (in the study, it said that many

times the communication was limited to low-level

concerns). The study pointed out that the challenges

that are causing these barriers that limit the outcomes

of code review are mostly social in nature. This

presents a clear opportunity for managers to facilitate

discussions in retrospectives or standups about the

“state of the code review process” within that team,

and how it might be improved.

Furthermore, by making code review (and therefore

code development) a true team sport, organizations

make themselves more resilient and adept by

managing and reducing knowledge silos. Atlassian’s

guide to agile development contends that agile teams

realize such benefits when code review decentralizes

work across the engineering organization. Specific

knowledge about the code base is not exclusive only to

one team or even one engineer.

Code review, therefore, can serve as an antidote to

(largely unintentional) knowledge hoarding. The

process inherently encourages knowledge sharing,

engineer participation, and collaboration. In many ways,

this process has even replaced much more traditional

training—which used to be an engineering manager’s

highest impact activity.

No more. Now, an engineering manager can realize

the greatest gains by developing a healthy code

review dynamic within the team. Traditional reviews

were motivated by the drive to reduce errors. Today’s

reviews offer managers opportunities to guide their

teams toward practices that promote healthier, more

engaging, and more constructive conversations within

the team.

5|The Engineering Manager's Guide To The Code Review Process

THE ENGINEERING MANAGER'S ROLE IN THE CODE
REVIEW PROCESS

Ultimately, the job of engineering leaders is not to code—it

is, instead, to remove obstacles so their teams are able to

spend more time working on valuable solutions and so their

work output has the reach, impact, and visibility it deserves.

So it would be easy enough to designate code review as the

engineers’ domain, where managers need not tread.

But that makes for a massive missed opportunity.

Without guidance and a healthy review culture, the PR process

can disintegrate into unproductive, though understandable,

behaviors. Some developers see code review as pulling them

away from their true work, and it’s impossible to deny that

review is a somewhat subjective process that, unshepherded,

can lead to disagreements, stalled commits, and even outright

hostility.

Many individuals also have not experienced the art of

accepting and giving criticism, and therefore haven’t learned

it. Unintentional communication breakdowns can lead to both

social and technical frustration, which of course gums up the

works too.

These sorts of PR environments are not sustainable or healthy.

That’s why managerial support is critical, if reviews are to

become opportunities for teams to learn from each other and

work toward more effective, more creative solutions.

This holds true with engineers of all levels. Engineers new to

the organization (or new to the industry) glean the team’s

culture, pace of work, style, and implicit coding standards

through involvement in the PR process. Senior developers

are able to coach more junior ones in their domain expertise,

and for engineers of all levels, code review is a chance to

identify strengths and weaknesses (both individually and

organizationally). And for co-located and distributed teams

alike, code review is perhaps the richest opportunity for work-

centric socialization and team-building.

So where do managers take part in this process?

Where training was once at the heart of management, code

review is now the prime way of improving an engineering

team’s output. By participating in and observing code review,

managers are able to track the health and productivity of

the team, which provides insight into where to intervene and

where to encourage progress.

In other words—the team is responsible for creating code and

for peer reviewing that code. Managers are responsible for the

behavioral trends exhibited in their teams’ code reviews.

In our work, we’ve learned to recognize common patterns

exhibited by software engineering teams—both successful

patterns that can be nourished, and problematic ones that an

aware manager can remedy. Here, we’ve assembled eight of

those dynamics that demonstrate the behaviors common to

developers and to engineering teams, how to recognize them

using Flow metrics, and what managers can do to bolster their

teams’ health and productivity.

6|The Engineering Manager's Guide To The Code Review Process

COMMON DYNAMICS TO IDENTIFY IN THE CODE REVIEW PROCESS

LONG-RUNNING PRS

Long-running pull requests have been open for

an unusually long period of time. Organizations

ship at different rates, so a PR that stays open

for 5 hours could be long-running for one

organization, where 24 hours will long-running

for another. Sometimes, PRs will stay open for

several days.

There are a number of reasons why a PR might

stay open for an extended period of time:

• There’s uncertainty or disagreement about the

code (which can reveal itself with a few back-

and-forth comments earlier in the PR followed by

silence)

• There are large spaces of time between

comments and responses in the review

• The PR is massive (think: multiple days’ or even

weeks’ worth of work) and team members are

avoiding having to review all of that code

• The PR was submitted at 5pm on a Friday,

so the review didn’t start until the following

Monday at best

Apart from being symptomatic of possible

disagreement or confusion within the team, long-

running PRs are also themselves a problem. A PR

that is a week old can quickly become irrelevant,

especially in fast-moving teams. In short, long-

running PRs are bottlenecks to a release.

How to recognize them: Long-running PRs

can quickly be identified in the team’s Review

Workflow report, filtered by “PR Status: Open” and

sorted by “oldest PRs.” Select the number of PRs

you’d like to see in one view, then hover over those

that have been open for more than a day.

If you see a few back-and-forth comments

with signs of uncertainty or disagreement in

the communication, followed by silence, it’s

worth checking in to see how you can move the

conversation forward.

What to do:

• If there are signs of disagreement or confusion

in the discussion: It’s usually best to first check

in with the Submitter. It’s their responsibility to

get their work across the line, so they should

be encouraged to bubble up disagreements

or uncertainties as they arise. If there is a

disagreement, get their read on it and offer

advice to move it forward. Depending on the

situation, get the Reviewer’s read on it as well —

ideally when everyone is together in a room or

on a call. Make a decision, and ask anyone who

disagrees to “disagree and commit” for the sake

of the team’s progress.

• To manage this pattern in the long-term, or

if there are large spaces between comments

and responses in the review: Set expectations

or targets around Time to First Comment and

Time to Resolve. (Both metrics can be found

in Flow’s PR Resolution report.) It can also

be helpful to communicate best practices

around responding to colleagues in a timely

manner. When it takes someone a day to

respond to a comment, that can mean there’s

a lot of time spent waiting on others, and the

communication isn’t timely enough to be as

effective as it could be.

7|The Engineering Manager's Guide To The Code Review Process

HEROING

Heroing is the reoccurring tendency to fix other people’s work

at the last minute. Right before each release, the Hero finds

some critical defect and makes a diving catch to save the day.

Of course, attention to detail is essential and a good save is

usually better than no save. But regular Heroing leads to the

creation of unhealthy dynamics within the team or otherwise

encourages undisciplined programming. Some team members

even learn to expect Heroes to jump in on every release.

Heroing can be a symptom of micro-management or poor

delegation. It also points to trust issues on a number of levels.

Heroing will ultimately undermine growth by short-circuiting

feedback loops and, over time, can foster uncertainty and

self-doubt in otherwise strong engineers. At its worst, Heroing

feeds a culture of laziness: everyone knows the Hero will “fix”

the work anyway, so why bother. Ironically, those last-minute

fixes are the genesis of a lot of technical debt.

How to recognize it: The Hero typically dominates Flow’s Help

Others metric, particularly in the form of late arriving check-

ins. They’re also distinguishable in the review process, where

they may be self-merging PRs (and typically right before

the deadline), or they will show very low Receptiveness in

the review process (meaning either others aren’t providing

substantial feedback or the Hero isn’t incorporating it).

It can be hard to disagree with their changes—especially

with these changes being made so late in the sprint. This

is partly why the Hero’s PRs usually show a very low level

of engagement in the review process (see the Review and

Collaboration metrics).

What to do:

• Rather than managing the “saves,” manage the code review

process. Ideally, team members are making small and frequent

commits and requesting interim reviews for larger projects.

If that’s not the case, consider working toward that goal first.

Getting the Hero’s feedback early, even before the code is

done, will help improve the problematic tendencies.

• When the team is in the habit of getting feedback early and

often throughout a project, as opposed to submitting massive

PRs all at once, the barrier to participating in the review

process is lower. This can make it easier to promote healthier

collaboration patterns and get everyone—especially the

Hero—to give and be receptive to feedback in reviews. Coach

the Hero to turn their “fixes” into actionable feedback for their

teammates to implement with time to spare.

8|The Engineering Manager's Guide To The Code Review Process

OVER-HELPING

Collaboration among teammates is to

be expected, as it is a natural part of the

development process. However, “Over-helping”

can occur if one developer spends an unnatural

amount of time helping another developer get

their work across the line.

Engineer One submits. Engineer Two cleans it up,

over and over again. This behavior can be normal

on small project-based teams. But when that 1-2-

1-2 pattern doesn’t taper off, it’s a signal that can

draw your attention.

The problem is threefold: (1) always cleaning

someone else’s work takes away from one’s own

assignments, (2) it impairs the original author’s

efforts toward true independent mastery, (3) it

can overburden the helper and leave the original

author in a continuous unnatural waiting state.

How to recognize it: You’ll notice this common

dynamic in the same way you’d realize Heroing in

Flow’s Review and Collaboration reports and the

Help Others metric. Look for reoccurring, last-

minute corrections between the same two people.

In the Review and Collaboration and Operational

reports, you’ll notice these two engineers

consistently review each other’s work. One

engineer will have a high Help Others, but it’s

not reciprocated. The load-bearing engineer will

also show high levels of Influence and Review

Coverage. The other engineer will not. One

engineer will have a high Impact; the other won’t.

This behavior can be perfectly healthy and

expected when in a mentorship-type situation. But

beyond a certain point, rotation is in order.

What to do:

• Bring additional engineers into the code review

process. A side effect of this solution is that by

increasing the distribution of reviews, you’re

strengthening the team’s overall knowledge of the

codebase.

• Cross-train and assign both engineers to different

areas of the codebase.

• Assign the senior engineer a very challenging

project. The idea here is to give them challenging

projects where they don’t have the time or energy

to review their colleague’s work.

• Lastly, the stronger of the two is showing natural

leadership and coaching tendencies. Look for

opportunities to feed these skills more broadly to

the whole team.

• One note of caution: be mindful when the two

engineers are friends or were colleagues at a

former employer. Making light of a friendship or

teasing them can be incredibly damaging and

hurtful. Go the extra mile to keep it professional.

And, as always, be transparent. You’re not trying

to split up friendships. It’s the manager’s job

to ensure that knowledge of the codebase is

distributed evenly across the team and to ensure

that people are honing their craft and growing

their careers.

9|The Engineering Manager's Guide To The Code Review Process

OVER-ENGAGEMENT

It may seem counterintuitive that over-communicating

in code review can be a problem. After all, we want

our teams to be excited about—and engaged in—their

work. However, since over-commenting comes at the

expense of an engineer’s own deliverables, such over-

engagement can affect team morale because some

engineers are not achieving what is, ultimately, their

responsibility to accomplish.

The problem arises when over-engaged engineers

spend a disproportionate amount of their time

providing feedback (helpful or not) on other people’s

work and too little time working on their own projects.

The healthy mix of reviewing and contributing is

thrown out of whack.

Furthermore, while gregarious teammates often

ignite interesting and creative conversations, this

problem emerges when their PR contributions tip

from beneficial commentary to comment spam. Their

contributions may make them appear busy, but the

data shows this behavior is not constructive.

How to recognize it: As a manager, you may miss

that this is happening, because most of what you see

appears to be sound engagement. But the teammates

know it’s going on. They’re on the receiving end of that

over-engagement, and they’re acutely aware of it—they

just might be unable to talk to you about it.

You may first spot this dynamic in the Review

Workflow when you notice a team member is

frequently engaging in the PR process as a Reviewer.

Perhaps they’re commenting, providing feedback, or

otherwise showing a strong level of engagement with

other people’s work. This behavior is only something

worth noticing when the feedback that’s being

provided is going far beyond what’s “good enough”

for that specific project. If you notice a highly engaged

Reviewer, you can go to their Player Card to see their

level of Involvement and Influence—and evaluate that

in context with their Code Fundamentals (“Is this team

member spending more time in review than on their

own work, and is that expected?”), and with the team’s

averages for that time period.

What to do:

• It helps to remain aware that over-engaged engineers

may have come to believe through learned behavior

that commenting in this way allows them to contribute

most helpfully to the team. Helping others is helpful,

right? So as a leader, you need to ensure that you’re

setting proper expectations and guiding these

engineers to correct course.

• It can be challenging to tell these engineers not to

comment so much, because they often feel they are

contributing positively. A more constructive approach

is to add projects to their bucket of work over the next

couple sprints. As they feel the pressure of hitting their

deliverables, they’ll naturally tend to scale back on their

commenting activity. That’s when you give them an out.

• By doing this, you can let them know, “You clearly have

a lot of work on your plate. If that needs to come at the

expense of some of the code review you’ve been doing,

that’s totally okay.” Just giving them that little out is

usually all you need to restore balance on the team. That

engineer is hitting objectives for the sprint, and the team

feels overall happier and more harmonious.

10|The Engineering Manager's Guide To The Code Review Process

JUST ONE MORE THING

Just One More Thing refers to a pattern of late-arriving pull requests.

A team submits work, but then—right before the deadline—they jump

in and make additions to that work.

Sometimes only one or two individual contributors will show this

pattern, and that generally points to behaviors that require an

individual. But when the majority of the team is submitting PRs

right before a deadline, it can mean there are larger process or

even cultural issues that are causing an unpredictable workflow. This

pattern can occur for a wide range of reasons, including last minute

requests, poor planning or estimates, and too much work in progress.

How to recognize it: Just One More Thing, when appearing across a

team, is characterized by a spike in PRs being submitted near the end

of a sprint after the main PR was approved. These engineers will also

show a high level of New Work.

What to do:

• Late-arriving PRs are a sign that work is being rushed and given less

review. Even when the work is submitted by engineers who are very

familiar with the code, the PRs should be treated as riskier than other

equally sized PRs that are submitted earlier in the sprint.

• When you notice a spike in PRs being submitted, it can be helpful to

review the work submitted and decide whether it should be given an

extra day’s review.

• Longer-term, consider working with the team to identify any

bottlenecks or process issues that could be eliminated or improved.

• If the team’s estimates or deadlines are causing last-minute stress,

consider setting different internal deadlines for projects. Another

framework that some teams use is to consider the three levers in

setting a deadline: the external deadline (if any), the scope of the

project, and the resources available. It’s typically not realistic to change

one without having to change the others, so it can help the planning

process to take all three variables into account.

• If last-minute requests are coming in from outside the team, talking

to the stakeholders or managers whose groups are regularly causing

the problem can give you the opportunity to show the impact of the

problem and understand what’s going on from their perspective.

11|The Engineering Manager's Guide To The Code Review Process

KNOWLEDGE SILOS

Knowledge Silos are usually experienced between

departments in traditional organizational

structures, but they also form within teams

when information is not passing freely between

individuals. They form when a group of engineers

review only each others’ work.

Imagine two or three engineers who review all of

each others’ PRs, and don’t review anyone else’s

PRs on their team. These engineers learn about

each other’s work and techniques, and the areas

of the code that they’re working in, while other

engineers on the team who aren’t part of the silo

don’t have that same level of information.

There are plenty of reasons why engineers will

get into a cycle of reviewing only each other’s

work — figuring out the reasons why, through

discussions with the team and by reviewing the

Team Collaboration metrics, can sometimes point

you toward the broader team dynamics at play.

For example, if these engineers want to work

together because everyone else on the team is

slow to review their code, you can consider setting

expectations around Time to First Comment and

Reaction Time.

Whatever the cause, reviewing a select group of

engineers’ work for a long time can lead to less

substantial reviews simply because the engineers

trust that each others’ work is good enough.

When that happens, these situations can turn into

bug factories. Work is being approved and pushed

forward without adequate evaluation.

How to recognize it: When team members are co-

located, a basic understanding of where people sit

in an office along with an awareness of any other

social bonds can be helpful indicators as to where

silos may form.

You can also use the Knowledge Sharing report

to visualize how knowledge is being distributed

across a team in the review process and to identify

knowledge silos. If there are two or three people

who review only each others’ code, the team’s

Knowledge Sharing Index will trend toward 0.

If the majority of the team reviews each others’

code, the Index will trend toward 1.

You can then drill down into specific team dynamics

with the Review Radar. When there are silos, there

will be a small group of engineers who review only

each others’ work across multiple sprints.

What to do:

• Bring in the outsiders! Look for outliers and

stranded engineers and get those individuals

involved in the review process. You can also see

whether there’s anyone who could be cross-trained

or onboarded on a specific area of the code that

an engineering within the silo is working on.

• Assign other engineers to review the work of the

individuals that make up the silo, and have the

individuals within that tight-knit group review the

work of others outside their group.

12|The Engineering Manager's Guide To The Code Review Process

SELF-MERGING PRS

Self-merging pull requests refers to when engineers

open a pull request and then approve it themselves.

This means no one else reviewed the work and it’s

headed to production.

As a general rule, engineers should never merge

their own code. In fact, most companies don’t permit

them to: self-merging bypasses any form of check

on the code, as well as skipping the opportunity for

improvement and learning.

If the code is worth putting into the main code

branch, it is worth having somebody review it. Self-

merging represents a material security risk to the

company, no matter how talented an engineer is. Yet as

a practical matter, unreviewed pull requests happen a

lot, for any number of reasons.

How to recognize it: Self-merging is easy to see

because the submitter and the reviewer are the same

people. In Flow, these instances will show up in the

team’s Unreviewed PRs metric as well as in the Review

Workflow.

What to do:

• Many organizations prevent self-merging PRs by

configuring their build systems to reject them. Enforced

review is most common among companies that work

under regulatory compliance, like Fintech or Biotech

companies.

• Even in organizations that don’t enforce review,

managers should be in the know when these situations

do happen. Reviewing these PRs on a case-by-case

basis, even though they’re being reviewed after they’ve

have been merged, will help ensure that any bugs or

problems are not going to get buried.

• If the commit was trivial, you might be able to give QA

a heads-up to take a close look at it. If the unreviewed

pull requests are non-trivial, walk those back if the

circumstances allow and require a code review.

• Reducing the frequency of unreviewed and self-

merged pull requests is a best practice (Unreviewed

PRs should be 0%, or close to it). If engineers are in

the habit of self-merging without review, it may be

helpful to have an informal conversation with them to

ensure that they understand the why behind the review

process or that they are at least clear on expectations.

If they’re more senior, encourage them to follow the

best practice of getting code thoroughly reviewed by

others, so other engineers will model that behavior.

13|The Engineering Manager's Guide To The Code Review Process

RAMPING UP

We cannot overstate how helpful the PR process can

be in encouraging the team to consistently learning

from each other. Code review is always a chance for

cross-pollinating information and expertise between

team members. So using PRs in the process of

onboarding and ramping up engineers new to the

organization is a great way to build connections

between developers who will be working together.

A key component of successful engineer onboarding

is ensuring that new arrivals are learning both the

code, as well as how to engage meaningfully with

their new teammates.

If you ask your engineers—and particularly recent

hires—how things are going, you’re bound to get the

initial “Great” answer. Things may be great, and they

often are. But sometimes they may be going off track

like Han Solo in a botched princess rescue, bluffing

their way by saying, “Everything’s fine, we’re all fine

here now, thank you…How are you?”

So you can rely on the data to show you how things

are truly going.

What to do:

• Use the data to understand the dynamics of a new

hire’s review engagement. By looking at PRs Submitted

and PRs Reviewed, you can identify where new

hires are interacting with their teammates. If you’ve

paired engineers together, you can see where those

interactions are going well, as well as where new hires

have jumped in on other engineers’ work too. After

all, commenting on multiple people’s work will build

rapport within the team over time.

• The data can also help you understand the quality of

their comments in the review process by examining

the responsiveness and review coverage of both the

new hires and the experienced developers. This will

demonstrate the traction the new hires are getting

within the team, and where engineers may be dragging

their feet, you can use this opportunity to remind

them about the importance of welcoming new team

members into the fold.

Remember that PRs are about so much more than

finding bugs. While ramping up, as well as throughout

engineers’ time with the team, code review is

a fantastic way to reinforce cultural values. By

encouraging engineers to participate more in the PR

process, not only are you encouraging best practices,

you’re also empowering them to speak their minds and

use their voices. “You were brought onto the team for

good reasons,” you’re saying. “Your team wants to hear

what you have to contribute.”

Participation as a newcomer also reinforces the notion

for the established engineers that they need to be

open to receiving and accepting feedback. “This is an

important part of who you are,” you’re saying. “And this

is an important value for this organization.”

In short, PRs are one of the best ways not to just talk

about your values but to actually live them, every day.

And that’s true not just in the onboarding process,

but in your day-to-day, too. Developing software is

no longer about individual engineers cranking out

code (if it ever was). It’s a team effort. By focusing

on these dynamics of the code review process and

utilizing the data available to you, you can improve

the value your team gleans from the code review

process—and start guiding better engineers and

better products as a result.

Get started with a trial on-premise or in the cloud

Contact us: sales@pluralsight.com

1.888.368.1240 | 1.801.784.9007

2
8
6
9
5
0
-2

0

CONCLUSION

Ultimately, code review is about so much more than just

catching errors. It’s a place where the team can work together

to create even better solutions for customers. The review

process is where team members can share knowledge, provide

feedback, learn from one another, and build a culture that

supports healthy collaboration patterns.

And managers can provide the most high-value contributions

not by participating in those reviews, but by looking at the

process as a whole and noticing quick wins and areas where

the team could work better together. A leader’s role is to

remove obstacles that block developers from doing their best

work, and to coach team members toward healthy work and

collaborate patterns. They work on the process, rather than in

the process.

We hope this guide helps deepen your understanding of the

practical benefits of code review, as well as the manager’s

capacity to support the team in reaching their potential.

For further reading, we’ve expanded on these patterns to

identify in our recently published book: 20 Patterns to Watch

For in Your Engineering Team, which you can download for

free.

 ENGINEERING LEADERS HAVE BEEN OPERATING IN
THE DARK

For many organizations, software engineering is one of the

most expensive and mission-critical departments. Companies

invest millions of dollars in software engineering without a

feedback loop to understand how well they’re doing or where

to focus on improvement.

FLOW TURNS THE LIGHTS ON WITH OBJECTIVE
DATA

Flow generates actionable metrics to optimize release

processes, improve collaboration workflows and remove

bottlenecks while creating unprecedented visibility for all levels

of management.

GET DEEP VISIBILITY INTO YOUR DEVELOPMENT
PROCESS

Flow instruments the tools in your development workflow—

from commit data, pull requests, tickets and more—to provide

actionable insights into individual and team workflows.

TURN WORKFLOW DATA INTO OPERATIONAL
IMPROVEMENT

Flow gives software leaders a fact-based view of effectiveness

and performance with prescriptive metrics to drive process

improvement. The end result is improved quality, more time

spent coding, healthier distribution of knowledge, and faster

time to market.

Pluralsight gives you the confidence you need to accelerate velocity

by providing visibility into your software engineering process.

BUILT BY ENGINEERS,
FOR ENGINEERS

