
SOFTWARE
ENGINEERING:
WHY HAS IT ELUDED
DATA-DRIVEN
MANAGEMENT?
How engineering has been operating
in the dark and what to do about it

OVERVIEW

Imagine yourself as a fly on the wall of an executive boardroom, listening to

the heads of each corporate division present an overview of the past year:

Marketing will share a range of metrics on lead conversion, cost per lead and

ROI on marketing spend; Sales will walk through a detailed, quantitative

breakdown of the sales funnel; Finance will present a broad set of Key

Performance Indicators; the operations and customer retention teams will

similarly present a variety of critical metrics.

But, what about the software engineering organization? We can speak to

features delivered, story points completed and ticket velocity… but these are

all subjective measurements, not meaningful metrics based on hard data.

Even though much of a company’s value is directly tied to their investment

in software, most executives operate in the dark when it comes to

understanding the performance of their engineering team. Instinct and ‘gut

feelings’ are the best tools we’ve had to make decisions about budget items

costing millions of dollars.

Just as other disciplines have benefitted immensely from objective metrics

and actionable KPIs, forward-looking software organizations are

experiencing the same lift that has transformed the rest of the enterprise.

Today, gut feelings are being replaced with data.

252315-19

Software engineering teams are made up of analytical, intelligent

individuals—so why aren’t they as metrics-driven as other

departments?

If you ask software engineering leaders why this is the case, you’ll

get a range of answers:

Engineering is an art form—metrics cannot properly reflect

productivity

Engineering data is not easily accessible

We measure story points and ticket velocity

•

•

•

Of the answers above, the most legitimate is that engineering data is

not easily accessible. Until recently, data housed in git-based

repositories has been challenging to leverage, particularly if an

organization uses many repositories and if engineers use multiple

aliases to commit code.

However, this issue has been solved by a recent class of applications

that can measure and quantify data across git repositories.

With this hurdle cleared, the next question is how soon the software

engineering world will embrace data-driven management, the way

that every other organization in the executive boardroom has.

HOW WE GOT HERE

Which brings us to the question of, if the software engineering

world is truly next in line to embrace a metrics-driven management

approach, what metrics will emerge as the industry standards?

The following is our take on the engineering metrics of the future,

based on our work with over 300 customers:

TURNING THE LIGHTS ON WITH DATA

3252315-19

Over time, this engineering
team has steadily increased
their Impact to the codebase.
Whether this is a result of
hiring additional engineers or
improving team performance,
this graph paints a picture of
success that the rest of the
organization can understand.

Baselining past team output levels and measuring progress towards

systematic improvement is a clean way for engineering teams to

generate and document productivity gains.

A team of 100 engineers may cost in excess of $10 million a year in fully

loaded costs. So, documenting a 20% increase in output provides a

path for engineering management to demonstrate multiple millions of

dollars in value generated for their company.

The first question for a software engineering organization is whether its

total output and productivity are improving, compared to prior periods.

Software engineers are difficult to hire and often require ramp-up time,

so increasing the output of an existing team is the most immediate way

to move the needle on value delivered.

The most basic measurements of output, which are code volume (e.g.

lines of code) and commit volume, are deficient and not complete

indicators of the complexity or sophistication of work completed.

Therefore, we expect the industry to standardize around metrics that

better reflect the cognitive load of work completed, such as Pluralsight

Flow’s Impact metric. Impact attempts to answer the question:

“Roughly how much cognitive load was carried when implementing

these changes?”*

Productivity and Output
INSIGHT 01

4252315-19

Commit and Pull Request Behavior
Receiving visibility into commits and pull requests as they occur, as well as

to their content, code profile and complexity, is a direct way for managers

to better understand the progress, and challenges, of their team members.

Software engineering managers rely heavily on daily stand-ups and 1:1

check-ins to understand the progress of their engineers. The portion of

this verbal interaction that is focused on diagnosing risk and getting

status on progress can be reallocated to productive coding time if the

team manager instead uses a data-driven dashboard that shows

commit progress and PR reviews as they happen.

While viewing commits in a data dashboard may not sound sexy, it is an

easy way to eliminate one to three hours of unnecessary meeting time

each week for each team member, which can result in roughly a 5%

increase in productive time.

INSIGHT 02

A manager’s time is zero-sum
and should be applied for
maximum impact. When
reviewing code commits, data
cuts through the noise and
signals which work carries an
elevated risk profile to be
prioritized for additional
review.

5

Over the past six months, this
engineering team set a target
of 75% Efficiency and is now
working within industry norms.

*The Fundamentals Metrics, a
Pluralsight data science study
of 7M commits, across 1.8M
active days, from 87,000
authors which established
statistical evidence for
industry benchmarks and
Pluralsight’s Fundamentals
and its associated Leadership
Playbook.

Code Churn
Code churn, or code rework, is not a bad thing. Testing and rework are

natural parts of the software development process. However, code

churn levels that deviate significantly higher or lower than expected

norms can represent smoke that is an indicator of a potential fire.

In benchmarking the coding behavior of over 85,000 software

engineers*, Pluralsight found that code churn levels most frequently run

between 13-30% of all code committed (i.e. 70-87% Efficiency), where a

typical team can expect to operate in the neighborhood of 75%

Efficiency.

Since a baseline level of Code Churn is always expected, only when

Efficiency moves materially above or below 75% should there be cause

reason for concern—something is likely amiss. A churn level of less than

10% would indicate that an engineer is potentially sacrificing speed for

precision; a churn level of over 25% would suggest that an engineer

may be stuck, or is working on a project where they need assistance.

By baselining the ‘natural’ churn levels of typical types of projects,

engineering managers can actively monitor churn by engineer, or by

project, to identify areas where their team may be hung up and need

assistance. A particularly high (or low) churn level could be an early

indicator that a project is not progressing as planned.

INSIGHT 03

6252315-19

Legacy Refactor vs New Work
A common question that is posed to both the CFO and CTO is ‘How

much of our software engineering investment is spent on new work,

versus supporting or refactoring legacy code?’

This is a metric that can be easily quantified by analyzing code at the

time of commit, creating hard data on how much of a team’s

productivity is dedicated to new projects versus to technical debt.

It is now possible to quantify the percentage of work delivered that

relates to legacy refactoring down to the line level. A 100-person

engineering team that spends 30% of its time on legacy refactor is

spending over $3 million a year working on older code.

Incorporating this data into the standard KPI set of a software

engineering organization should be a no-brainer, once the values are

accessed and aggregated from the source code repositories.

INSIGHT 04

At the beginning of the
period, this team focused on
new and exploratory work as
indicated by the New Work
(green) and prominent Code
Churn (red). In mid-
November, they transitioned
to paying down technical
debt with an emphasis on
Legacy Refactoring (orange).

7252315-19

Collaboration trends in code reviews
Rating Pull Requests by their underlying code complexity, and

quantifying the number of reviewers and comments, is a simple way to

establish metrics for the code review process.

This data is accessible in the code repository and provides the

engineering manager with a clear input into the collaboration process

that is taking place around code reviews, providing another example of

how simple quantification of engineering behavior can make a manager

more effective.

When too much time is spent in code review, it can be an

organizational drain; if not enough review occurs on high complexity

PRs, it can put the broader code base at risk. By using data, managers

can optimize the time spent on code reviews while also decreasing

downstream risk to the codebase.

In addition to better managing pull requests that are in process,

managers can do systematic review of past PRs to identify healthy, and

risky, collaboration patterns.

INSIGHT 05

Data allows managers to
identify collaboration trends
like how long Pull request
are staying open, if review
protocols are being
followed, or when an
unusual amount of PRs are
being rejected (closed).

8252315-19

Will software engineering embrace metrics?
WHAT’S NEXT

Data is not a substitute for management—it is a tool that makes

management better. By using data, managers can better understand risk,

identify bottlenecks and replace low-value meetings with analysis of trends

in the codebase.

The cultural approach taken to embracing and utilizing metrics is critical in

determining the effectiveness of a data-driven management approach.

Everyone involved must agree that the purpose of using metrics is to make

the whole team better. The emphasis needs to be on team improvement

and learning so that everyone can get better and create a better work

product.

If it is perceived that metrics will be used punitively, arbitrarily or without

context, then it is possible to create a defensive or destructive culture. From

the top-down, the emphasis should be on improvement, growth and

increased self-awareness so that the whole organization can evolve.

Data does not replace management

Data must be used for good

We are at an exciting threshold to the software engineering world entering

the realm of data-driven management. Some key points to understand

about adopting data-driven metrics within software engineering

organizations:

252315-19

About Pluralsight

Pluralsight gives you confidence you have the skills and insights you need to execute
your technology strategy. You can upskill your teams into modern tech roles, improve
workflow e	ciency and build reliable, secure products. We are the technology skills
platform.

By leveraging our Skills product, which includes expert courses, skill assessments and
one-of-a-kind skills and role analytics, you can keep up with the pace of change, put the
right people on the right projects and boost productivity. With our Flow product, you can
debug your development processes with objective data, identify bottlenecks and keep a
pulse on the health of your software teams.

Used together, they empower you to develop, measure and deploy critical skills at scale
and improve engineering e ectiveness.

Visit pluralsight.com/business to learn more

01.

03.

02.

04.

Engineering leaders have
been operating in the dark.

For many organizations, software
engineering is one the most expensive and
mission-critical departments. Companies
invest millions of dollars in software
engineering without a feedback loop to
understand how well we’re doing or where
to focus on improvement.

Get deep visibility into
your development process.

Flow instruments the tools in your
development workflow—from commit
data, pull requests, tickets, and more—to
provide actionable insight into individual
and team workflows.

Flow turns the lights
on with objective data.

Flow generates actionable metrics to
optimize release processes, improve
collaboration workflows and remove
bottlenecks, while creating unprecedented
visibility for all levels
of management.

Turn workflow data into
operational improvement.

Flow gives software leaders a fact-based
view of e ectiveness and performance—
with prescriptive metrics to drive process
improvement. The end result is improved
quality, more time spent coding, healthier
distribution of knowledge, and faster time
to market.

With the 2019 acquisition of GitPrime, Pluralsight Flow gives
you the confidence you need to accelerate velocity and visi-
bility into and across your software engineering teams.

