
The Ultimate Guide 
to Email Integrations

The Pros and Cons of Using APIs  
vs. Building It Yourself

2019



2

 Why now: the urgency to offer business tools 

like email, calendar, and contacts within your 

SaaS app

 Building an email, calendar, and contacts 

integration from scratch

Integrating with the Nylas API

 Questions for CTOs and product managers  

to future-proof your business

3 

 

4 

9

12

Contents



3

Why now: the urgency to offer business 
tools like email, calendar, and contacts 
within your SaaS app

“Data from smart, connected products is 

generating insights that help businesses, 

customers, and partners optimize product 

performance.”

We live in an era of connectivity: connected cars, connected homes, and social 

platforms for connecting. It’s no wonder, then, that businesses and consumers are keen 

to adopt software that connects with other tools and applications they use every day — 

like email.

Even with the explosion of messaging tools, email continues to be the bedrock of 

business communication. In fact, more people use email today than ever before in 

history. By 2024, the number of worldwide email users will increase to more than 4.2B, 

and the email marketing industry alone will be worth $22.16bn.3

In response to this data, more SaaS applications offer an email communication layer 

within their apps: from customer relationship management software (CRM), to applicant 

tracking software (ATS), to HR, legal, and real estate software.

Email integration is a powerful asset to any SaaS app. Users become more engaged 

with your platform when they can send, receive, and track analytics on emails all within 

one dashboard. The need to context-switch between what were formerly two disparate 

systems — email service providers (ESPs) and software applications — is reduced or 

eradicated. Time spent on manual data entry goes down, your customer’s efficiency 

goes up, and user adoption grows.

In fact, one study from Accenture shows that sales reps alone spend as much as 20% 

of their day on manual data entry.4 By eliminating this need, you make the end users of 

— Harvard Business Review1



4

your software 235% more efficient — a huge value-add that can easily be monetized.

While it’s clear that creating mailbox integration for your application is beneficial 

for both your customers and your business, implementing the functionality is more 

difficult. When approaching the decision to build the integration in-house from scratch, 

or employ an API, there are a few things to consider. The purpose of this paper is to 

provide you with the tools you need to navigate the build vs. buy decision and get the 

biggest ROI from your email integration (both time and financial).

Option 1: Building an email, calendar,  
and contacts integration from scratch
Engineers love problem-solving, which is why they’re often eager to tackle new and 

complex challenges. Building an email integration is exactly that — a highly complex 

build with a large number of edge cases per ESP. For some engineers, this could be a 

fun challenge, but there’s a lot to consider when deciding if it’s the right step for your 

team, for example:

How complex is it to build the integration?

Building an email, calendar, and contacts integration occurs in four stages: research, 

development, implementation, and (often forgotten) updates and maintenance.

Building an integration for one ESP (such as Microsoft Exchange) from scratch can 

take as long as 12 months for a team of four engineers. As you build integrations for 

additional ESPs, you’ll find that the number of edge-case scenarios, bugs, and server-

side issues you encounter increases exponentially.

Below is a quick overview of the integration process for the five major ESPs.

Gmail

Connecting your app to Gmail’s email, calendar, and contacts data might seem simple 

at first. Ask any developer who has built the integration end-to-end, and they’ll tell you 

that simple features like recurring events, time zones, and email attachments are just 

the tip of the iceberg. Google’s OAuth updates and security concerns add another few 

weeks or months of development time to your timeline.

Anticipated time to integrate: 3-6 months for a team of 4 engineers.



5

Exchange/ActiveSync (EAS)

Microsoft Exchange is one of the most widely used ESPs, especially in the enterprise — 

but it’s also one of the most challenging integrations to build. Originally, the Exchange 

protocol was created for pocket PCs developed in the early 2000’s. Today, Exchange 

uses two main protocols - EAS and EAS to send data in binary XML. “Among public 

companies using cloud-based email, Microsoft is more popular with larger organizations 

and has more than an 80 percent share of companies using cloud email with revenue 

above $10 billion,” said Jeffrey Mann, research vice president at Gartner.5

Microsoft’s documentation is thorough but dense — as long as 1,000 pages — and 

the systems EAS relies on are outdated and unnecessarily complex.6 For example, all 

ActiveSync emails must be encoded in a binary version of XML to save bandwidth. In 

addition, you’ll often encounter server-specific issues that can be challenging to debug 

or replicate.

Anticipated time to integrate: 6-12 months for a team of 4 engineers.

IMAP

Every IMAP server implements the RFC spec slightly differently. To start, you’ll want 

to decide how strict or how permissive you want your implementation to be; the 

stricter the implementation, the less email functionality and support you’ll have. If 

your implementation is more comprehensive, the integration period could stretch for 

months.

Building the IMAP implementation will add only email functionality to your app; to add 

support for calendars and contacts, you need to parse CalDAV and CardDAV objects 

and then return them in a consistent way to match the way you handle other ESPs.

Anticipated time to integrate: It takes two engineers about a year to support the 

long-tail of IMAP providers like iCloud, Fastmail, Yahoo, AOL, Mail.ru, and Dovecot.

Office 365

The Office 365 APIs are fairly rudimentary and lack some of the features needed to 

build a fully supported email integration with your app. For example, the Office 365 

APIs don’t include email analytics like open and click tracking. You can add attachments 

to emails, but you can’t add inline images.



6

In addition, the Office 365 APIs have reliability issues that Exchange/ActiveSync doesn’t 

experience. With 0ffice 365, you don’t get the high-value hosted or on-premises 

Microsoft Exchange environments that the Fortune 500/Global 2000 companies 

overwhelmingly run.

Anticipated time to integrate: 4 months for a team of 4 engineers to build a 

feature-limited integration.

Outlook.com

Outlook.com is used by millions across the globe, which makes it an essential part of 

your MVP for your email integration. However, ongoing support and maintenance costs 

can rise over-time, and updates to the API can introduce breaking changes.

Anticipated time to integrate: 2-3 months for a team of 4 engineers.

What are the ongoing maintenance costs?

Maintenance costs rise as you update your app to support the changing requirements 

and capabilities of the email service providers. And if a new customer uses an ESP you 

haven’t yet built an integration for, the research, development, implementation, and 

maintenance process starts all over again.

As your company grows and you sign more clients, the cost of securing and supporting 

hundreds of thousands of new accounts can cause severe drag in your team’s 

productivity, slowing your time to market and reducing your revenue.

For small engineering teams, maintaining an email integration may require additional 

headcount. For large engineering teams, it may postpone building other core features 

that differentiate your product from competitors — be sure to plan accordingly with 

your product management team and other stakeholders in the organization.

Opportunity cost

One of the biggest risks in building your own email, calendar, and contacts integration 

is the opportunity cost. What prominent features get delayed while your engineering 

team is focused on building the email integration from the ground up? How does this 

affect your competitive advantage over other companies in the same space?



7

Will the email integration be for internal use only,  
or will your customers use it?

Some companies simply want to integrate their email with their application internally, 

while others offer it as a value-add to their SaaS app. If email, calendar, and contacts 

are a core part of your business and will scale as you bring on new customers, many 

companies opt to build on top of an API that specializes in these integrations, which 

we’ll cover later.

Summary: Building an email integration from scratch

Full control over infrastructure

Decreased vendor reliance

Become experts in a niche field/

topic

Difficult and costly to maintain 

over time

Customer support costs

Security — you have to build 

your own security infrastructure 

for the integration

Opportunity cost

Slower time to market

PROS CONS



8

Calculating total cost of ownership:  
Can your bottom line take a custom build?

Costs to consider Cost per month Depending on the project scale

Opportunity cost Your engineering and 
product teams will be 
distracted building 
and maintaining 
infrastructure instead 
of features that they 
love building and that 
help drive revenue 
further.

You may need to delay a handful of features 
as you build and maintain an email integration 
Moving slowly may cause you to lose the 
competitive edge over.

Cost of security ± $50K per month SOC2, ISO 270001, etc. + staff to oversee 
implementation

**Additional costs arise as regions – like GDPR 
in the EU – update email security standards 
regularly.

Support costs Technical debt and 
scope creep that add 
to costs #1 and #2

10-20 engineers needed to update integrations 
when ESPs put out new releases, provider APIs 
are depreciated, or new customers with unique 
email/calendar infras are onboarded.

Additional team of 5-10 technical customer 
support people will be required to debug 
customer authentication and syncing issues for 
around 100K accounts.

Cost of 
operating 
servers

± $100-200K per 
month (assuming 100k 
accounts)

Database storage + I/O + instrumentation cost

*Don’t underestimate the cost of documentation 
and training when building your own tech 
stack! At the very least you’ll need to carefully 
document how new engineers will get up to 
speed on how to interface and query your 
integration, and keep that up to date.

 Cost of people 
to build and 
maintain the 
integration

± $150-160K per month 
(average integration 
build time is 24 months 
for all email service 
providers)

Minimum team required: 4 experienced back-
end infrastructure engineers

(±$800K-1.2M per year for 4 salaries with 
insurance and other costs) + 1 dev ops engineer 
+ 1 customer success engineer to debug issues 
+ project manager+ CTO/supervisor hours



9

Option 2: Integrating with the Nylas API

“There’s real value in APIs both from 

the technology point of view — e.g., to 

lower technical barriers to implementing 

collaborative multi-enterprise processes —  

and the business point of view — e.g., how APIs 

help companies to tap into “The Collective” of 

their external constituents to increase insight 

into their customers’ needs — and even their 

own business.”

If you want to go to market faster with an email integration, integrating with a fully 

supported API is the way to go. APIs are created by developers, for developers after 

years of research, exploration, and investigation of a multitude of edge-cases (and 

solving for them). The very best APIs have easy-to-use SDKs for the languages your 

application is built in as well as clear, updated documentation that make integrating  

a two- or four- week sprint as opposed to a months long project.

The Nylas API is built for SaaS applications that want to integrate with email faster,  

and with less risk. It’s one simple integration that powers your application with 100%  

of ESPs, and saves engineering teams as much as 18 months of development time.8 

There are a few additional benefits to using the Nylas API:

— Gartner, ‘A Cloud API Manifesto for Integration As A Service’ 7



10

Focus on core competencies

While using an API still requires some build time from your in-house time, it’s 

substantially less time-intensive than building a solution from the ground up.  

The shortened development cycle frees your team up to focus on your company’s core 

competencies — the “secret sauce” that differentiates you from the competitors.

Security and reliability

According to Gartner, “a growing number of Gartner clients are using public cloud 

services because they expect it to represent a security improvement.”9 It’s true that 

in many cases, API and SaaS companies that focus on a specific product know how to 

secure that product better than anyone in the business. 

Since email security is of utmost importance, and a breach of security could risk all 

business operations, teams are beginning to outsource security needs to the experts. 

With Nylas, your data is held to the highest levels of enterprise-grade security and 

privacy controls. Nylas is EU Privacy Shield Compliant and PCI and HIPAA ready.

Plan for the future with scalable architecture

An email API is the best line of defense against the numerous issues that arise as your 

data, number of users, and types of email accounts scale.

It also protects you against ESP-specific API updates so your application doesn’t break 

every time Google or Microsoft makes unannounced updates. Nylas syncs terabytes 

of data and hundreds of thousands of inboxes from ESPs, including Gmail, Office 

365, Exchange/ActiveSync, IMAP, Yahoo, and hundreds of others. All of this data has 

strengthened the Nylas API, which has matured to solve for edge-cases and unique 

server-specific issues that you’ll experience only at scale. By using the Nylas API, your 

customers have the most seamless experience possible.

The Nylas platform is designed for reliability and future-proofs your app against any 

unforeseen changes. Our developers are on the front lines of email API updates, 

maintaining great partnerships with the ESPs your users rely on to conduct everyday 

business.



11

How does it work?

The Nylas API powers your app with 100% of ESPs, driving powerful analytics and 

features for your endusers. We use a simple OAuth flow to authenticate your user’s 

inboxes, after which every email they send syncs automatically with your SaaS app in 

the background; no need for bcc.

Here’s what you get with Nylas

1. Best-in-class API and SDKs
Get up and running with Python, Ruby, JavaScript, and Node.

2. Services
SLAs support your team every step of the way.

3. Business Value
The Nylas email API allows your users to automate sales, marketing, and recruiting 

efforts, collect invaluable analytics on email data like open rates, click rates, and replies. 

Emails actually land in the recipient’s inbox, not the spam folder, since the IP address is 

tied to the individual user’s IP, not a massive transactional email sender.

Summary: Building with an API

Go to market faster

Lower management costs as you 

scale

Dedicated support team and 

onboarding engineer

Security

Low risk of failure

Not a turnkey solution — still 

requires some engineering time 

to implement

If you/your customers use only 

Gmail, the Gmail API is fairly 

simple to integrate with

Not applicable if you sell only 

on-premises (APIs are better for 

cloud solutions)

PROS CONS



12

6 Questions for CTOs and Product 
Managers to future-proof your company

Is there an urgency to build 
email and calendar functionality 

into my application? 

Am I seeing competitors 
building this functionality or are 

our customers and prospects 
looking for a more integrated 

solution?

 Is a company goal to increase 
customer engagement and 

retention? 

Which email integration solution 
will help me make a more 

immediate impact on this goal?

 What happens if the person 
who builds and maintains the 

integration leaves the company?

What is the total cost of 
ownership for integration 

(including engineering 
headcount, maintenance, 
infrastructure, customer 

support)?

How does that look 12, 24, or 36 
months from now?

Long-term vs. short-term gain: 

Which approach sets me up for 
success in the longterm without 

adding substantial additional 
resources?

 How will this affect our  
on-call rotation?

If our systems have errors or 
customers aren’t happy,  

do we need to hire additional 
headcount dedicated to support 

and maintenance?

1 2

3 4

5 6



13

Conclusion
Email continues to be the center of all business processes and it’s growing exponentially 

year over year. The question, then, is not if an email integration is a useful feature for 

most SaaS apps, but rather how quickly you can add this functionality. A comprehensive 

email API is an easy way to build this functionality while freeing up your engineers’ time 

to focus on other key features.

As Gartner VP of Research Paolo Malinverno says, “We already live in an API economy 

where CIOs must look beyond APIs as technology and instead build their company’s 

business models, digital strategies and ecosystems on them.”10 Learn more about how 

the Nylas API can add value to your SaaS app by requesting a demo from one of our 

platform specialists.



14

Sources

1.  Harvard Business Review, “How Smart, Connected Products Are Transforming 

Companies,” October 2015

2.  The Radicati Report, “Email Statistics Report 2015-2019,” March 2015

3.  PR Newswire, “Worldwide Email Marketing Industry Worth US$22.16 bn by 2024, 

Increasing Number of Email Users to Boost Market’s Growth, Says TMR,” April 2017

4.  Accenture Report via Accent Technologies, “Why you need to increase sales rep 

selling time (and how to do it)”

5.  Gartner, “Gartner Says Cloud Email is Gaining Traction Among Enterprises 

Worldwide,” February 2016

6.  Microsoft Technical Documentation

7.  Gartner, “A Cloud API Manifesto for Integration As A Service,” March 2010

8.  Nylas, “How LeadGenius Generated $50M+ In Revenue By Using Nylas APIs,” 

October 2016

9.  Gartner, “Everything You Know About SaaS Security Is Wrong,” June 2016

10.  Gartner, “Welcome to the API Economy,” June 2016

https://hbr.org/2015/10/how-smart-connected-products-are-transforming-companies
http://www.radicati.com/wp/wp-content/uploads/2015/02/Email-Statistics-Report-2015-2019-Executive-Summary.pdf
https://www.prnewswire.com/news-releases/worldwide-email-marketing-industry-worth-us2216-bn-by-2024-increasing-number-of-email-users-to-boost-markets-growth-says-tmr-619595883.html
https://accent-technologies.com/blog/2015/11/18/need-increase-sales-rep-selling-time/
https://www.gartner.com/newsroom/id/3196317
https://msdn.microsoft.com/en-us/library/cc425499(v=exchg.80).aspx
https://blogs.gartner.com/benoit_lheureux/2010/03/01/a-cloud-api-manifesto-for-integration-as-a-service/
https://www.nylas.com/blog/how-leadgenius-generated-50m-in-revenue-by-using-nylas-apis
https://www.gartner.com/doc/3339317?ref=SiteSearch&refval=&pcp=mpe
https://www.gartner.com/smarterwithgartner/welcome-to-the-api-economy/


Nylas.com Github.com/Nylas @Nylas

https://www.nylas.com/
https://github.com/Nylas
https://twitter.com/nylas

