
1

ENTERPRISE OPEN SOURCE SOFTWARE

PROPRIETARY SOFTWARE
60%

50

40

30

20

10

0%

60%

50

40

30

20

10

0%

41%

36%

USAGE TODAY EXPECTED IN
2 YEARS

55%

26%

2019 TRENDS IN OPEN SOURCE VS. PROPRIETARY SOFTWARE USAGE

5 Reasons Why Using Spreadsheets for
Open Source Management is a Recipe for
Disaster
Respecting the terms of the licenses that govern the software
created or used by your organization is just as important when the
licenses are open source as when they are proprietary. Manage ment
of these licenses is an exercise whose importance transcends events
like an Initial Public Offering (IPO) or a merger or acquisition (M&A),
as revenue could be impacted when potential clients complete their
due diligence before a purchase or an online marketplace requires
a report before releasing your app on their platform.

Most organizations start off managing all of their open source depen-
dencies in a spreadsheet. This is a process that generally involves
someone from legal, engineering, product, or security tracking down
the correct engineers to fill out a form that lists every open source
component used to help build a product. Then, legal and security
review the dependencies against license policy and security vulner-
ability databases to ensure the software is compliant and secure.
Finally, these reports are finalized and shared with auditors for IPOs
or Mergers/Acquisitions and/or reports are doled out to customers
and partners who require compliance.

T L ;D R

• Open source software licenses

need to be managed with the same

diligence as proprietary ones

• Most organizations start off with

management of open source using

spreadsheets, which is a manual

process that is prone to failure for

five reasons:

1. Scale of the development team
or scale at which open source
is used

2. Complications around
tracking dependencies

3. Accuracy of tracking and
recency or completeness
of licensing data

4. Change management or
workflows around tracking
version control of your
spreadsheets

5. Relationships and alignment
between legal, security,
product, and engineering

©2019 Fossa Inc.

AS THE USE OF OPEN SOURCE GROWS AND DEPLOYMENT
TIMELINES SHRINK, MANAGEMENT OF OPEN SOURCE IS
A GROWING CONCERN THAT MANY ORGANIZATIONS ARE
STRUGGLING WITH HANDLING EFFECTIVELY.

Source: “The State Of Enterprise Open Source - Redhat.com.” Enterprise Open Source Report 2019, RedHat,
15 Apr. 2019, www.redhat.com/cms/managed-files/rh-enterprise-open-source-ebook-f16984bf-201904-en_1.pdf.

2

Reason 1: SCALE
Scale destroys this process in two ways: the scale
of the team and the scale at which open source
software is used.

In a growing team, the “spreadsheet approach” can be feasible with
5-10 engineers. At 50 engineers you start to play a game of tele-
phone. Legal has to track down the VP of Engineering, who tracks
down the project leader who probably assigns this task to multiple
engineers.

What does that look like at 100 engineers? What about 1000? The
process is too scattered and decentralized to deliver an accurate
report, not to mention the time lost from tracking down the engi-
neers, and the engineers tracking down the dependencies. These
productivity hours are much better-leveraged building competitive
and innovative products.

The scale of open source software utilization has also drastically
changed. Leveraging a spreadsheet was successful when there
were only 50 open source projects in existence, but open source
has spread at a prolific rate with 72% of companies1 stating they
frequently use open source, 69% of enterprise companies are plan-
ning on increasing their consumption of open source software2.
A spreadsheet simply cannot keep pace.

1 “Corporate Open Source Programs Are on the Rise as Shared Software Development Becomes Mainstream for
Businesses.” The Linux Foundation, 11 Sept. 2018, www.linuxfoundation.org/uncategorized/2018/08/corporate-
open-source-programs-are-on-the-rise-as-shared-software-development-becomes-mainstream-for-businesses/.

2 “The State Of Enterprise Open Source - Redhat.com.” Enterprise Open Source Report 2019, RedHat
15 Apr. 2019, www.redhat.com/cms/managed-files/rh-enterprise-open-source-ebook-f16984bf-201904-en_1.pdf.

Source: Todo Group. “Open Source Programs Survey.” GitHub Todogroup Survey: Open Source Programs Survey,
Todo Group, github.com/todogroup/survey.

» INDUSTRY ADOPTION OF OPEN SOURCE
The enterprise has embraced open source, regardless of industry.

69%
OF ENTERPRISE
COMPANIES PLAN
ON INCREASING
THEIR CONSUMPTION
OF OPEN SOURCE
SOFTWARE

47%16%37%

26%

15%8%

11%

16%

10%

20%

44%

53%

53%

77%

63%

40%

37%

27%

All companies across all industries

Technology (Software or IT) Companies with more than 10,000 employees

Companies with more than 10,000 employees

Technology (software or IT) Industry

Telecom, Communications and Media Industry

Financial Services Industry

Yes we have an open source program We are planning an open source program We do not have an open source program

Sounds like a headache already – but here are
five concrete reasons why spreadsheets set
you up to fail:

3

Reason 2: Dependencies
Relying on engineers to complete forms and fill
out spreadsheets will (at best) track most of the
first level dependencies (the open source compo-
nents they are intentionally using in their projects).

However, providing an accurate list of dependencies is not (and
shouldn’t be) a software engineer’s priority. Finding all the depen-
dencies can be difficult, as some projects — such as Uber’s open
source project Kepler — have more than 1300 dependencies.3 This
type of tracking can easily be automated, while manual tracking
consumes valuable engineering resources and takes them away
from building the company’s products, tools or infrastructure.

The truth of the matter is that any list an engineer compiles will
always be incomplete. The direct dependencies you rely on for your
product to work also rely on other, external open source compo-
nents (transitive dependencies). And those transitive dependencies?
They also rely on open source components. This tree can go on for
quite some time. At the end of the day, your company is responsible
for complying with every single license for every single open source
component used throughout the dependency tree.

Reason 3: Accuracy
There’s going to be some inaccuracy in your engi-
neers’ dependency list if you’re tracking manually,
but dependency lists aren’t the only area with a high
likelihood of errors. For example, making sure you

have included the correct license with your dependency can be a
challenge. Sometimes a license is declared, sometimes licenses
are embedded in the actual files, and sometimes a license can be
declared and embedded, but the licenses don’t match.

Even more challenging is keeping a spreadsheet of all components
up to date, especially with modern development practices. If engi-
neers are continuously committing code (CI/CD), your spreadsheet
should be updated with every commit. For example, Amazon engi-
neers deploy code every 11.7 seconds.4 Many, if not most of those
commits will include open source packages. It’s impossible for
anyone to keep up with that.

3 “Large-Scale WebGL-Powered Geospatial Data Visualization Tool.” Kepler.gl, kepler.gl/.

4 Novak, Asami. “Most Companies Deploying Code Weekly, Daily, or Hourly.” New Relic Blog,
New Relic, 4 Feb. 2016, blog.newrelic.com/technology/data-culture-survey-results-faster-deployment/.

KEPLER, ONE OF UBER’S
OPEN SOURCE PROJECTS
HAS AROUND 1300
DEPENDENCIES3

AMAZON ENGINEERS
DEPLOY CODE EVERY 11.7
SECONDS.4 MANY, IF NOT
MOST OF THOSE COMMITS
WILL INCLUDE OPEN
SOURCE PACKAGES.

©2019 Fossa Inc.

Reason 4: Change Management
How can you tell when your spreadsheet is up to
date? Do you create a different version? Do you
create rules that automatically track when the file is
updated? How do you distribute the correct version

to the parties involved in listing dependencies? How do you asso-
ciate the spreadsheet with different deploys or product updates?
Keeping your company aligned on what version of a document is
the correct version is just a hard problem to solve in general.
Doing it when there are so many moving parts? It’s an ordeal, to
say the least and requires some change management around your
open source management, constant diligence, and frequent train-
ing (and re-training) as the engineering team grows or changes.

Reason 5: Relationships
This is probably the least quantifiable, but one of
the most devastating consequences of relying on
manual processes. The relationships between legal,
security, product, and engineering can become

very strained, very fast. Engineering can feel like legal is breath-
ing down their neck, making them resistant to communication.
Even more damaging, engineers will target lawyers as the reason
for missed deadlines. Legal can feel isolated because they are
responsible for managing risk, but reliant on others with differ-
ent priorities and deadlines. Product teams can feel exhausted by
relaying information to the correct parties on different teams and
satisfying none of them. This friction can create silos and strain
partnerships across organizations.

ABOUT FOSSA:
FOSSA is the world’s first Modern Open Source Management
platform. Designed for development and legal teams alike,
FOSSA provides component intelligence, continuous compliance,
and cross-team collaboration solutions that enable engineering
excellence and accelerate market capture while mitigating
business risk.

FOSSA.com | Sign up with Github | tldrlegal.com

FOSSA, Inc. | Modern Open Source Management
950 Howard Street, San Francisco, CA 94103

SICK OF THIS PROCESS?
TRY AUTOMATING YOUR
WORKFLOW

FOSSA introduces a modern

approach to open source com-

pliance so you can focus on

bringing a better product

to market faster instead of

managing your software

development through spread-

sheets or outdated legacy

tools. We give you the tools

you need to accelerate product

development and collaborate

cross-functionally in order to

have a competitive product and

competitive engineering brand.

http://www.fossa.com
https://github.com/login?client_id=3a3e36ce36a9cf2228f6&return_to=%2Flogin%2Foauth%2Fauthorize%3Fclient_id%3D3a3e36ce36a9cf2228f6%26redirect_uri%3Dhttps%253A%252F%252Fapp.fossa.com%252Fapi%252Fservices%252Fgithub%252Fauthorize%252Fcallback%253Fservice_login%253Dtrue%26response_type%3Dcode%26scope%3Duser%253Aemail%252Cpublic_repo%252Cwrite%253Arepo_hook%252Cread%253Aorg
http://tldrlegal.com

