
How to Integrate  
Calendars Into Your App

Learn how to avoid common pitfalls  
of the integration and set yourself up for scale.

2019



2

About Nylas

Nylas is a developer platform that powers applications with email, calendar, and 

contacts integrations through a REST API. The Nylas API handles more than 100 million 

API requests per day and has synced more than 15 billion emails. 22,000 developers  

are signed up to use the API. We’re excited to share some of our learnings here.

Overview

Our calendars help us keep track of our lives from the most mundane to the most 

significant moments: dentist appointments, car repairs, baby showers, surprise birthday 

parties, business meetings, flight details - you name it. Integrating these calendars into 

the software tools businesses and consumers use has become mission-critical for many 

software companies — but (ask any developer), building these integrations is a complex 

process that can take months. Google, Outlook, Microsoft Exchange, Yahoo, and the 

rest have their own API quirks and process data in different ways. 

We created this guide to help make your calendar integration process easy. In this 
guide, you will learn:

The deceptively complex world of calendar events and RRULEs....................................... 3

How to build timezone-proof integrations across calendar providers............................... 6

How to use the Nylas Calendar API to quickly and easily connect to all calendar 

providers.............................................................................................................................14

https://www.nylas.com/


3

The Deceptively Complex World  
of Calendar Events and RRULEs

But underneath this simple “Repeat” checkbox is a surprising amount of complexity 

resulting from years of legacy standards with backward compatibility. What happens 

when an RFC meets the real world?

Repeat as necessary.

Working with repeating events is important for a few different kinds of apps. If you’re 

building a calendar UI, you want to make sure the events you show match what the user 

sees at the source. However, any kind of scheduling app needs to display events in 

order to accurately show a user’s availability.

There are two ways to work with repeating events:

1. �Take a single event and the information for it repeats, and generate all the 

occurrences of that event, or;

2. �Use an API that expands the occurrences for you, and treat them more like 

standalone events.

Daily meetings, birthdays, chores, and personal reminders. These are all common types 

of calendar events which repeat on a set schedule, and modern calendar applications 

easily support creating them.

Swab the Decks

7/29/19 7/29/199:00am 9:30amto

All day Repeat: Weekly on Monday, Wednesday, Friday   Edit

Time zone

Calendar interface 

for creating recurring 

events.



4

Let’s start from the ground up — a single event which repeats.

The RRULE.

The key to any repeating event is the recurrence 

rule, a way of describing how that event 

repeats. These are also referred to as RRULEs.

Recurrence rules are primarily defined in RFC 

2445, section 4.8.5.4, which also describes the 

full “iCalendar” spec for .ics files. Calendar 

providers like iCloud and Google Calendar 

provide downloads of these files for apps.

The RRULE format encapsulates a repeating pattern, such as “every Thursday”. 

Combined with the event’s starting time, you can figure out exactly when each future 

occurrence of the event should begin. Note that the RRULE itself doesn’t encode the 

starting times.

A simple RRULE for an event which repeats every day looks like this:

RRULE:FREQ=DAILY

The RRULE syntax can also specify a total number of instances, or an end time:

RRULE:FREQ=DAILY;COUNT=10;

RRULE:FREQ=DAILY;UNTIL=20150919T063000Z

You can choose one or more days of the week to repeat on, and even alternate between 

specific days:

RRULE:FREQ=WEEKLY;BYDAY=TH	 # every Thursday

RRULE:FREQ=WEEKLY;BYDAY=MO,WE,FR	 # every Mon, Wed and Fri

RRULE:FREQ=WEEKLY;BYDAY=TU;INTERVAL=2	 # every other Tuesday

RRULE syntax goes far beyond these simple examples, including support for day of 

month (e.g. the third Thursday in November), week numbers, repeating on the same 

numerical day of a month, and plenty more. If you want to experiment more with 

specifying RRULEs, the rrule.js demo is a superb place to do so.

https://tools.ietf.org/html/rfc2445#section-4.8.5.4
https://tools.ietf.org/html/rfc2445#section-4.8.5.4
https://tools.ietf.org/html/rfc2445#section-4.8.5.4
https://www.nylas.com/blog/calendar-events-rrules/#


5

The python-dateutil module in Python has a parser which makes it easier to work 

with RRULEs:

from dateutil.rrule import rrulestr

from datetime import datetime

rule_string = “RRULE:FREQ=WEEKLY;BYDAY=TH”

# Use rrulestr to parse a RFC-formatted string

# Without a start time, it assumes the rule starts from now.

rule = rrulestr(rule_string)

# Get the next occurrence

rule.after(datetime.now())

# Get all the occurrences in December

december_1 = datetime.now().replace(month=12, day=1)

december_31 = december_1.replace(day=31)

rule.between(after=december_1, before=december_31)

Given a calendar event with an RRULE property, you can figure out all the times that 

event actually happens. This is usually fairly straightforward, but what happens when 

the clocks go backward?



6

Building Timezone-Proof Calendar 
Integrations

When a timezone transitions into or out of daylight savings, repeating events are 

expected to remain at the same local time. For example, lunch is always scheduled for 

12:30, even if the underlying UTC time is an hour earlier or later, as Google Calendar 

shows here:

This can cause its share of headaches, especially when you represent datetimes globally 

in UTC. One alternative way to implement this when using dateutil.rrule is to 

normalize with an event’s timezone throughout, which ensures that daylight savings is 

accounted for when we convert the final event times back to UTC.

Here’s an example where we expand the recurrence rule for an event that spans a DST 

change (in this case, the switch from PDT to PST on 11/1/15):

Google Calendar 

interface with lunch 

always scheduled at the 

same time.



7

from datetime import datetime

from dateutil.rrule import rrulestr

from dateutil.tz import gettz

rule_string = “RRULE:FREQ=WEEKLY;BYDAY=MO,TU,WE,TH,FR”

start = datetime(2015, 7, 6, 12, 30).replace(tzinfo=gettz(‘US/

Pacific’))

# start = arrow.get(2015,07,06,12,30,00,0,)

rule = rrulestr(rule_string, dtstart=start)

# When expanding the rule, we get 12:30pm US/Pacific

times = rule.between(

	� after=datetime(2015,10,30,00,00,01,0).replace(tzinfo=gettz(‘US/

Pacific’)),

	� before=datetime(2015,11,2,23,59,59,0).replace(tzinfo=gettz(‘US/

Pacific’)),

	� inc=True)  # List[datetime]

print(times)

# When converted, 12:30pm on 10/30 becomes 19:30 UTC, and

# 12:30pm on 11/2 becomes 20:30 UTC due to the daylight change 

on 11/1.

print([t.astimezone(gettz(‘UTC’)) for t in times])

Exceptions to the rule.

Given an RRULE, you can figure out when a specific repeating event is going to occur. 

But what about one-off changes to the event? This happens often when repeating 

meetings are moved for one day, or their agenda/location is changed, or they are 

canceled altogether.

Cancellations.

Cancellations to a specific repeating instance are fairly straightforward: the iCalendar 

spec includes support for exception dates when repeating events do not occur on a 

specific cycle. For example, you may cancel a daily meeting on Christmas Day. These 

exceptions are expressed in the EXDATE field:

https://tools.ietf.org/html/rfc2445#section-4.8.5.1


8

RRULE:FREQ=DAILY

EXDATE:20151225T173000Z

You’ll notice the EXDATE is in fact a datetime (not just a date) represented in ISO 8601. 

When dealing with repeated events, this means you need to keep careful track of 

the start time of the original event, and use that to determine at what time the event 

should repeat. An easier way to identify these individual repetitions is by their full UTC 

datetime. You can also conveniently use the same identifier when specifying repetitions 

which don’t exist.

In dateutil, to expand a recurrence rule with an EXDATE we need to convert our 

singular rrule into a rruleset:

from datetime import datetime

from dateutil.rrule import rruleset

# Create a daily recurrence starting on 12/20 at 17:30

daily = rrulestr(“RRULE:FREQ=DAILY”,

                 dtstart=datetime(2015,12,20,17,30,00))

rules = rruleset()

rules.rrule(daily)       # Add the daily RRULE to the set

# Exclude 12/25 at 17:30

excl_date = datetime(2015,12,25,17,30,00)

rules.exdate(excl_date)  # Add the excluded date to the set

rules.between(datetime(2015,12,24), datetime(2015,12,27))

# >>> [datetime.datetime(2015, 12, 24, 17, 30),

#      datetime.datetime(2015, 12, 26, 17, 30)]

You may have noticed that the rruleset.exdate method takes a datetime instance 

rather than an EXDATE string. This is a bit annoying, and means you’ll need to parse the 

EXDATE string into datetimes yourself. Here’s an example of how to do that.

from datetime import datetime

 

from dateutil.tz import gettz

from pytz import all_timezones, UTC

 

def parse_rrule_datetime(datetime_str, tzinfo=None):

https://en.wikipedia.org/wiki/ISO_8601


9

    # format: 20140904T133000Z (datetimes) or 20140904 (dates)

    if datetime_str[-1] == ‘Z’:

        tzinfo = ‘UTC’

        datetime_str = datetime_str[:-1]

    if len(datetime_str) == 8:

        dt = datetime.strptime(datetime_str, ‘%Y%m%d’). 

        replace(tzinfo=UTC)

    else:

        dt = datetime.strptime(datetime_str, ‘%Y%m%dT%H%M%S’)

    if tzinfo and tzinfo != ‘UTC’:

        if tzinfo not in all_timezones:

            raise ValueError(‘Unknown timezone.’)

        dt = dt.replace(tzinfo=gettz(tzinfo))

    return dt

def parse_exdate(exdate):

    # Parse the EXDATE string and return a list of timezone- 

    aware datetimes

    if not exdate:

        raise ValueError(‘Invalid exdate.’)

    excl_dates = []

    name, values = exdate.split(‘:’, 1)

    tzinfo = ‘UTC’

    for p in name.split(‘;’):

        # Handle TZID in EXDATE

        if p.startswith(‘TZID’):

           tzinfo = p[5:]

    for v in values.split(‘,’):

        if not v:

            raise ValueError(‘Invalid date found in exdate: ‘ + v)

        # convert to timezone-aware dates

        t = parse_rrule_datetime(v, tzinfo)

        excl_dates.append(t)

    return excl_dates



10

Modifying events.

When a change is made to a specific instance of a repeating 

event, you will have to move out of RFC territory and into 

something more like a Calendar Wild West. The seemingly 

logical thing to do is to cancel the instance (using EXDATE) 

and create a brand new one-off event with the changed 

information.

From the point of view of the original event, this looks 

identical to a real cancellation. (In the following example, 

fields are cherry-picked from the full event.)

Original event:

BEGIN:VEVENT

RRULE:FREQ=DAILY;COUNT=5

SUMMARY:Treasure Hunting

DTSTART;TZID=America/Los_Angeles:20150706T120000

DTEND;TZID=America/Los_Angeles:20150706T130000

END:VEVENT

With one event in the series modified:

BEGIN:VEVENT

RRULE:FREQ=DAILY;COUNT=5

EXDATE;TZID=America/Los_Angeles:20150707T120000

SUMMARY:Treasure Hunting

DTSTART;TZID=America/Los_Angeles:20150706T120000

DTEND;TZID=America/Los_Angeles:20150706T130000

END:VEVENT

BEGIN:VEVENT

SUMMARY:Treasure Hunting

LOCATION:The other island

DTSTART;TZID=America/Los_Angeles:20150707T120000

DTEND;TZID=America/Los_Angeles:20150707T130000

END:VEVENT

By disconnecting the modified event from its parent series, you can run into a 

misleading situation. It looks like the parent isn’t repeating on that specific day,  



11

but it actually still is! If you delete or change the parent event, the modified exception 

event will stick around regardless.

Instead, the prevailing approach is to add metadata to the modified event that points 

back at its parent, and not update the EXDATE:

BEGIN:VEVENT

UID:0000001

RRULE:FREQ=DAILY;COUNT=5

SUMMARY:Treasure Hunting

DTSTART;TZID=America/Los_Angeles:20150706T120000

DTEND;TZID=America/Los_Angeles:20150706T130000

END:VEVENT

BEGIN:VEVENT

UID:0000001

SUMMARY:Treasure Hunting

LOCATION:The other island

DTSTART;TZID=America/Los_Angeles:20150707T120000

DTEND;TZID=America/Los_Angeles:20150707T130000

RECURRENCE-ID;TZID=America/Los_Angeles:20150707T120000

END:VEVENT

If the RECURRENCE-ID is the original start time of the modified event, and the UID on 

both events is the same, you can connect the dots and figure out that the exception 

event replaces an instance in the series which was originally to occur at that time.

Let’s look at this in practice with an example that works directly with the Google 

Calendar API.

Recurring events for Google Calendar.

The Google Calendar docs say that recurrence information for an event is available via 

the recurrence field. This contains the RRULE and other recurrence information for an 

event (in practice, almost always just the RRULE).

Unfortunately, this isn’t sufficient to figure out exactly what’s going on with a repeating 

event due to cancellations and exceptions.

Google Calendar: recurring event cancellations.

Google Calendar exposes canceled events as separate, individual events alongside 

https://developers.google.com/calendar/concepts/#recurring_events


12

the original repeating events. By default, the API hides cancellations, but this can 

be disabled by including showDeleted=True as a URL parameter. This is by design 

because the Google Calendar API does not update the EXDATE field when an event 

is canceled.

A canceled event is returned here as an abbreviated event object, without fields such as 

the title and location:

{

  “id”: “uid1234_20150707T150000Z”,

  “status”: “cancelled”,

  “recurringEventId”: “uid1234”,

  “originalStartTime”: {

    “dateTime”: “2015-07-07T08:00:00-07:00”

  }

}

There are several clues to connect this back to the parent event:

• recurringEventId is actually the parent event id

• originalStartTime is the originally scheduled start time for this instance

• the event’s id is a combination of these two, with the time in UTC

Modifications.

Modifications to recurring events via the Google Calendar API look very similar to 

cancellations, but contain the full event information (title, location, etc). Again, the 

EXDATE does not change.

Expanding RRULEs with Google Calendar.

In order to find all the occurrences of a repeating event, including cancellations and 

one-off modifications, we must expand the “master” RRULE and iterate through 

“child” events which are linked back to the master via their IDs. In addition, keeping 

track of the event timezone is critical when attempting to match a child event based 

purely on the intended original start date, particularly as repeating events cross 

daylight savings boundaries. Google Calendar provides timezones in start, end, and 

originalStartTime properties.

One major downside of working with events this way is that a seemingly-simple query 

like “get all events on my calendar between these times” is substantially harder to write. 

Instead of retrieving all events which start within the supplied times, you need need to 

check if any previously defined repeating events will occur inside that window. When 



13

you have large numbers of recurring events combined with large time ranges, you start 

to run into memory limits as well!

Recurring events with Microsoft Exchange.

Unfortunately, the world of Microsoft Exchange is totally different, and the underlying 

Exchange ActiveSync protocol expresses recurrences and exceptions in a completely 

different format via WBXML like this:

<Recurrence>

  <Type>3</Type>

  <Interval>1</Interval>

  <WeekOfMonth>4</WeekOfMonth>

  <DayOfWeek>32</DayOfWeek>

  <CalendarType>0</CalendarType>

</Recurrence>

https://msdn.microsoft.com/en-us/library/ee219748(v=exchg.80).aspx
https://msdn.microsoft.com/en-us/library/ee219748(v=exchg.80).aspx


14

Connect to Any Calendar in 4 Lines  
of Code With the Nylas Calendar API

You can build unique connections with every individual calendar provider, or you can 

use the Nylas Calendar API and save months of developer time through one simple 

integration.

The Nylas events API makes it simple to generate an accurate representation of a 

user’s calendar. The original recurrence information is available in RRULE format as 

recurrence on an event, but you can also simply add expand_recurring=True as a 

URL parameter to automatically expand all recurring events. This is a quick way to focus 

on building features, rather than figure out the details of repetitions, cancellations, and 

exceptions yourself.

With Nylas, you get all the features of integrating directly with the calendar service 

provider itself and more, including: full CRUD, powerful analytics, and enterprise-grade 

security.

Ready to get started?

Get started with a free 30 day trial, or learn more from one of our platform specialists.

https://www.nylas.com/calendar-sync
https://docs.nylas.com/reference#get-events
https://dashboard.nylas.com/register?utm_campaign=cal_api_wp_feb19
https://www.nylas.com/api-request-demo?utm_campaign=cal_api_wp_feb19


Nylas.com Github.com/Nylas @Nylas

https://www.nylas.com/
https://github.com/Nylas
https://twitter.com/nylas

